1. SPARSE FACTOR ANALYSIS

Let n be the number of individuals in a sample and p be the number of genotypes.
Represent each allele at a locus as a number (e.g., for SNPs from a diploid organ-
ism, as in our results above, represent AA as 0, AB as 1 and BB as 2). Our factor
analysis model with K factors can be written as:

K

(1) Gij = lij + Z AikFlrj + €ij,
k=1

or, equivalently,

(2) Gij ~ N(pij + (AF)ig, 7))

where G is an n X p data matrix, the mean term i, ; is the sum of row- and column-
specific means: p;; = v; +§;, A is the n x K matrix of factor loadings, F' is the
K x p matrix of factors, and € is an n X p matrix with each element independently
distributed ¢; ; ~ N(0, (0 jl) and is the product of a row- and a column-specific
variance term v; ; = 6;n;. We put a gamma prior on the inverse residual variance
that acts as a regularizer: 6, ~ Ga(a, $) and n; ~ Ga(k,7), which has mean
af3 (kT, respectively) and variance a3 (k72, respectively). In practice, we set
a=k=1and § = %, T = %. This model, with only mean term §;, is referred
to as SFAm in the main text; the SFA model is obtained by fixing the vector u
at zero. For both SFA and SFAm, as described in the paper, we fix 7; = 1 for
j = l..p. The ECME algorithm for fitting the general SFA model is described
below; the ECME algorithm for fitting SFA is obtained by simply setting f; ; = 0
and 7; = 1 throughout. Note that here we have chosen to have column-specific
(i.e., SNP-specific) means and row-specific (i.e., individual-specific) variances W.
The other possible options are implemented in the software. In some contexts,
including the population structure problem considered here, it might make sense
to allow more general assumptions, such as variance terms on both the rows and
columns of the matrix, but we leave their evaluation to future work.

To induce sparsity in the factor loadings A, we use an automatic relevance
determination (ARD) prior (?). Specifically, we assume A ~ N(0,07,), where
the matrix ¥ = (azk)l-:17,_,,n,k:17,,.7;< is a parameter that we estimate, together with
the other parameters, using maximum likelihood. If the estimate of oi x = 0, this
implies that A, = 0, thus inducing sparsity.

1

Integrating out A, the rows of G are conditionally independent given the other
parameters, with:

(3) Gi. ~N(p, F'SiF + 071,

where X; = diag(o}.) (a diagonal matrix with the K-vector o7 on the diagonal),
and U; ' = diag(0; 'n;t, ..., 0" n,"). Thus the log marginal likelihood for the
parameters p,), >, U is:

Lp, F N4V G) = logp(G!u,FZ v)

6 = —Z * [plos(2m) +10g | F'S,F W7 4 Gl (FISF + 97716,]

where G@j = Gi,j — M-

2. SPARSE FACTOR ANALYSIS ECME ALGORITHM

We fit this model using an expectation conditional maximization either (ECME)
algorithm (7) to maximize L(u, F, %X, U;G). This algorithm is similar to an EM
algorithm, but each maximization step maximizes either the expected log likeli-
hood, or the marginal log likelihood, for a subset of the parameters conditional
on the others. Specifically, the updates to u, F', and ¥ involve maximizing the
expected log likelihood (with the expectation taken over A), whereas the updates
to X directly maximize the log marginal likelihood.

To compute the expected log likelihood requires the first and second moments
of the factor loadings A;.. The data G;. and the loadings A;. are jointly normal
(as in, e.g., Ghahramani and Hinton (?)):

©) {G} LES, @.NN([”] {thiF+\1/i1 F%D
Ai7. Y 7 (2] (2) Y

where O is a K-vector of zeros. Standard results for joint Gaussian distributions
give the conditional expectation for A; .

(7) A= E NG 1, Fo S, 0 = QG

where Q; = X, F(F'S,F + U7 1)*1. Similarly, the conditional second moment is
given by:

(8) A_z2 = E[A17Ai|Gz’, Ly F, 2@'7 \IIZ] = Ez - QlFtZz + Qlél,éf,gz

The updates for u, F', and ¥ involve maximizing the expected complete data log
likelihood, Q(u, F, X, ¥; G) := Ellog(p(G|A, p, F,¥))|X], which from Equation 2
is given by:

9) Qu, F, X, ¥; G) = const + Z Qi(p, F\ 3, ;5 Gy.)

=1

where
p
Qi(p, F, %, V;Gs.) = (g +pla — 1)) log(0;) + (g + p(k — 1)) Zlog(m)
=1

p

(10) - mé 3 (éij —2G;;FL K + FL AP — (%)) - (%) .

j=1

Taking the derivative of Q(u, F, 3, ¥; G) with respect to v; and setting to 0, we
get the update for v;:

OQ(F, %, U, 11:Gy.) 1L _
(11) Ov - 5 Zwlj - /Jli,j) + 2F;,Az) =0
D Ft E
(12) ﬁz _ 7=1 77](p 5] Iy)
j=1"j

Taking the derivative of Q(u, F, 3, ¥; G) with respect to £ and setting to 0, we
get the update for &:

(13) OUF, zg;/’“’ Z\If —)+ 2FA;) =0

> i1 0i(Gi, — & + F'Ay)

Z?:l 0
In these expressions, and in what follows, we are assuming element-wise multipli-
cation when a scalar multiplies a vector or a matrix.

Taking the derivative of Q(u, F, X, ¥; G) with respect to F' ; and setting to zero,
we get the update for F ;:

(14) =

F,¥,0, 2 ~
8@(5) mqu):Z\I,Z(GjA

—A2F) =0
aF’j 1 J)

n -1 5
i=1 i=1

Taking the derivative of Q(F,%;, U;, i1; G;.) with respect to 6; and setting to
zero, we get the update for 6;:
-1

1 S Y At e 2
Z 1 <G§’jGi7]’ — 2Gz,]FfjAz - ngAzzFJ> +2

16) =107 2p(a —1) g

4

We find the updates for 7; similarly:

-1

1
n+2n(k —1)

i (A Aot T 2
(17 iy = >0 0: (G Gig = 2GR — FLREE,) + =
i=1

To update 02 . we can use the result from Tipping and Faul (?) to obtain the
values of ¥ that maximize the log marginal likelihood L(u, F, %, ¥; G) with fixed
values of u, F', and V:

(18) @2,1@ = [(qzzk - Si,k)/sikh

where qzk = F,ﬁﬁ:kllé-’z and s, = F,ﬁﬁ:kl,iFk, where B_4; = (F'S; 1, F) + ¥; ! and
Yk = dz'ag(azl, "'70-i2,k717070-i2,k+17 ...,02-271(). Note that [a]y = @ when a > 0 and
= 0 otherwise. This works because, given F', the SFA model (Equation 1) is
essentially the sparse regression model considered in Tipping and Faul (?) with
F playing the role of the covariates. We implement the simplified version of this
equation from ?. In practice, we recomputed the C' matrix (here, the 3; matrix) for
each k = 1...K for only the first few iterations of the method, then each iteration
is much faster if we computed §; once for all £k = 1... K, with very minimal impact
on the results or convergence time (in the code, the cutoff is set to 5 iterations).

Note that F' and ¥ are non-identifiable in that multiplying the k' row of F'
by a constant ¢ and dividing the k" column of ¥ by ¢? will not change the like-
lihood (Equation 4). To deal with this we impose an identifiability constraint,
213 b (P — F.)? =1for k=1,..,K, where F},. = %25:1 F. j. Specifically,
after each iteration we divide every element of Fj . by its standard deviation cy,
and multiply the k' column of ¥ by c2.

Similarly, the row and column means v; and §; are non-identifiable in that adding
a constant ¢ to one set of means is equivalent to subtracting ¢ from the other set
of means in terms of the matrix product v1, +£1,,. Intuitively, one might want to
center the means for the individuals or samples at zero, allowing genes or SNPs to
have non-centered means. We can choose to center one of the mean vectors at zero
by subtracting the mean term 7 from each of the n elements of v, which centers
those mean terms, and then adding this same term 7 to each of the p elements of
&, which results in the same matrix of mean terms as the uncentered terms.

The last non-identifiability constraint we must deal with are the residual variance
terms, ¥;; = 6;n;. When p > n we look to see whether the largest element of ¢
minus the smallest element of 6 is greater than 3.0; if so, we scale 6 by a constant
so that 0,00 — Omin = 3.0, and we scale i by this same constant. Similarly, when
n > p, we check that 7,00 — Mmin < 3.0, and, if not, we rescale the 1 vector so
that this equation holds, and we scale 6 by this same constant for consistency. We
recognize that this is not an ideal way to induce identifiability, but it appears to
give reasonable solutions in practice.

5

In some situations with certain data sets, we found SFA to converge to a spike
in the likelihood, where a single individual’s genotype is modeled almost perfectly
by the factors (with a correspondingly low residual variance term). If this hap-
pens, there might be an issue with non-uniformity of variance across the loci (in
which case, removing alleles with very low MAF may help). Also trying different
random starting points might find a good solution. Another possibility is to put
the variance terms on the loci instead of the individuals, or using SFAm. Finally,
if the same individual continues to be modeled repeatedly with different random
starting points, this person might be removed from the data set.

Because we choose not to update the expected values of the loading matrix A
between the CM steps, monotone convergence of the log marginal likelihood is not
guaranteed, although in practice it appears to converge well. We find that conver-
gence is reached for the applications described here after fewer than 500 iterations.
For each genotype data set, we run SFA multiple times with random seeds, set-
ting the number of factors as described in the text; results presented in figures
are a representative example. A C++ package containing the general SFA code is
available for download at http://stephenslab.uchicago.edu/software.html,
along with some data sets for application.

