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1 Overview

The program MethylHMM is a collection of R and C code that estimates several properties
of DNA methyltransferases from double-stranded DNA methylation patterns. The program
implements a Bayesian Markov chain Monte Carlo (MCMC) procedure under the hidden
Markov model. Details of the model and MCMC procedure are in [3] and its Supplemental
Information.

The directory contains three subdirectories: Code, Data and Plots.
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• Under the Code subdirectory, the user may modify the main*.R files to set up cus-
tomized MCMC runs, as well as the analysis*.R files to analyze the MCMC output
and to generate plots.

– Code/Source contains the source code in R and C for the Bayesian MCMC pro-
cedure.

– Code/Tools contains R functions useful for analyzing the MCMC output.

• The Data subdirectory contains the FMR1 data, the in vitro mouse Dnmt1 data (taken
from [6] and [7]), and sample MCMC output based on which [3] is written.

– The raw data are under Data/.

– Data/HMM contains MCMC output under the HMM for the FMR1 data.

– Data/IEM contains MCMC output under the independent events model (IEM; [1])
for the FMR1 data.

• The Plots subdirectory contains the plots that are generated using the analysis*.R

files and appear in [3] and its Supplemental Information.

2 Installation and test run

The code under the Code/Source directory implements the Bayesian MCMC procedure
under the HMM as described in the manuscript and analyzes the FMR1 data stored in file
FMR1through22SEPrev.txt under the Data directory.

To do a short MCMC run, which takes about 30 seconds on a 2.2 GHz Mac computer,
do the following:

1. Compile the C code in Code/Source to generate a .so file to be used in R. You need
a cc or gcc compiler for this. You can download it freely if it is not already installed
on your computer. In a terminal window, go to the directory Code. For example,

$ cd MethylHMM_v6/Code/

To compile the C code, type both lines below:

$ R CMD SHLIB ./Source/StrandAssignmentProbs.c -o

./Source/StrandAssignmentProbs.so -lm

$ R CMD SHLIB ./Source/loglikHMM.c -o ./Source/loglikHMM.so -lm

2. Run main test.R under Code. This file sets up a short MCMC run. The user has
three options to run it:

(a) Run R. Change the working directory to where the subdirectory Code is located.
Open main test.R in a text editor. Copy and paste each line into R.
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(b) Run R. Change the working directory to where the subdirectory Code is located.
Type in the following command line in R:

> source ("main_test.R")

(c) (Batch mode; preferred for long runs of thousands of iterations and longer) In a
terminal window, go to where main test.R is located, and type

$ R CMD BATCH main_test.R &

This command line runs main test.R directly. Here & is to send the job to
background, allowing the user to carry out other tasks in the terminal window
while the program runs. This option also allows the user to submit the program
onto a computer server and leave it running for hours or days. Note that this and
only this option generates a .Rout file which is a log file containing all the input
and output during the running of the program.

3. To view output, go to directory Data.

3 Input data format

The user may format the input data file as FMR1through22SEPrev.txt under the Data

directory. For example, the first four lines from FMR1through22SEPrev.txt look like the
following:

F1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0

F1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0

F1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

F1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

The input data file should be formatted as follows:

1. It is comma delimited.

2. It contains 2N rows, where N is the number of methylation patterns, and S+1 columns,
where S is the number of CpG sites.

3. Column 1 is the index of the individual from whom the cells were extracted.

4. The (2i−1)-st and 2i-th rows, where i = 1, . . . , N , are a pair of strands from the same
double-stranded methylation pattern.
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Table 1: Three types of MCMC output files.

*.out (without
“strandtype” in file
name)

MCMC samples of parameters

*strandtype*.out Probabilities of strand assignment over MCMC iterations.
*.Rout Command lines, acceptance rates and run times

4 Output files

Three types of MCMC output files are summarized in Table 1 and explained in detail below.

1. MCMC samples (*.out without “strandtype” in file name):

• The file is tab delimited.

• It contains R rows, where R is the number of MCMC iterations stored.

• It contains S + 13 columns, where S is the number of CpG sites.

– Columns 1-3: associating probability of DNMT1, τM , of the DNMT3s on the
parent strand, τRP , and of the DNMT3s on the daughter strand, τRD.

– Columns 4-6: dissociating probability of DNMT1, ρM , of the DNMT3s on
the parent strand, ρRP , and of the DNMT3s on the daughter strand, ρRD.

– Columns 7-(6 + S): site-specific methylation probability m.

– Columns (S + 7)-(S + 8): mean rm and scaled variance gm of the beta distri-
bution assumed for m.

– Column S+ 9: measurement error rate due to inappropriate bisulfite conver-
sion. This rate is assumed to be constant across CpG sites.

– Columns (S+10)-(S+11): de novo activity rate δm and maintenance activity
rate µm of DNMT1 (on the daughter strand).

– Columns (S+12)-(S+13): de novo activity rate δRD and maintenance activity
rate µRD of the DNMT3s on the daughter strand.

2. Strand assignment probabilities (*strandtype*.out). Each probability is the posterior
probability for assigning the top strand in a double-stranded pattern to be the parent
strand, given the data and estimates of the parameters (also see Section 4.2 in [2]).

• The file is tab delimited.

• It contains R rows and N columns, where R is the number of MCMC iterations
stored and N is the number of methylation patterns.
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5 Analyses of output files

5.1 Basic analyses

File analysis FMR1.R under the Code subdirectory contains the R code to produce summary
statistics and plots from the MCMC output. To use this file, run R and set the working
directory in R to where this file is located. Copy and paste those command lines in this file
into R.

The analyses include:

1. Generating summary statistics, such as median, 10- and 90-percentiles, of the MCMC
samples.

2. Deriving association and nonassociation lengths, as well as hemi-preference ratios,
using the MCMC samples.

3. Deriving mean probabilities of maintenance and de novo methylation events, using the
MCMC samples.

4. Producing histograms and scatterplots of the original and derived MCMC samples.

5. Producing trace plots of the MCMC samples for diagnosing the performance of the
MCMC run.

5.2 Inference for hemimethylated dyads

See analysis FMR1Human1through22 hemis.R for the R code. Also see [4] for rationale and
results. For each hemimethylated CpG dyad in the data, the code can be used to infer
what event (failure of maintenance, de novo on parent CpG, de novo on daughter CpG, or
measurement error), with its corresponding probability, could have given rise to the observed
dyad. This inference is possible for the HMM and for the independent events model from
[1].

5.3 Inference of top two most likely explanations

See analysis FMR1Human1through22 paths.R for the R code. Also see [3, 4] for the algo-
rithm and results. The code infers the top two most likely (with ties) explanations for each
double-stranded pattern under the HMM.

6 Customization of MCMC runs

To set up your own MCMC run, you may create a new main.R file, using the same format
as that in main test.R. The command lines you are most likely to change are explained in
Section 6.1. To achieve a better performance from the run, you may also want to modify
other options, explained in Section 6.2.
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6.1 Basic setups

• Input and output file names. Change the directory in line

dataDir = "../Data"

Change the input file name in line

file.in = paste (dataDir, "/FMR1through22SEPrev.txt", sep="")

Change the output file names in lines

file.mcmc = paste (dataDir, "FMR1_mcmc.out", sep="")

file.strandtype = paste (dataDir, "FMR1_strandtype.out", sep="")

• Nucleotide positions of CpG sites. The positions are specified in loc. Its first element
is always 0, second element indicates the nucleotide position of the 1st CpG site, and
so on.

• Run length. Change the number of iterations in line

n.iter = 100

You may want to scale up (or down) the value of step.size as well. Changing these
two arguments together helps control the size of the output files. This is because, after
the initial burn-in (number of MCMC iterations for burn-in is specified in burn.in as
a percentage of the total length), every step.size-th MCMC sample is written to the
output files. The number of MCMC iterations stored, R, is calculated as

R = n.iter× (1 − burn.in)/step.size.

The total number of iterations should be large, whereas it is good enough to have R
around a few hundreds.

• Seed value (seed.value). Any positive integer works. This number should be different
for different MCMC runs, so that each run can generate a different set of random
numbers.

• Disable outputting the MCMC iteration numbers. When running the MCMC for
thousands of iterations, the main.Rout file will be unnecessarily large. You may disable
outputting these numbers onto screen or into the .Rout file by setting PRINT.ITER to
0.

• Measurement error rate due to failure of bisulfite conversion. This rate is denoted b in
[1, 2, 3]. This rate is not estimated by current program. It is estimated by experimental
approaches [5].
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6.2 Tuning the MCMC run

Since the MCMC algorithm is stochastic and attempts to draw realizations from distributions
of interest, its performance can be improved by modifying initial values of the parameters
and standard deviations (SDs) used to generate proposals of these parameters. Whereas
initial values tell the program where to start sampling, SDs allow the program to move
around in large or small steps. The SDs are generally the key tuning parameters.

• Initial values of parameters. There is no need to change initial values for site-specific
methylation probability m. All other initial values can be changed. For instance,
tau.curr specifies initial values for associating probability τ for DNMT1, the DNMT3s
on the parent strand and the DNMT3s on the daughter strand. rho.curr specifies
initial values for dissociating probability ρ in the same order.

• Standard deviations (SDs) that are used to generate proposals of parameters. These
values can all be changed based on the acceptance rate of the corresponding parameter.
Acceptance rates appear at the end of an MCMC run either in an R console or in the
*.Rout file. An acceptance rate of 20-30% is considered reasonable. If the acceptance
rate is much higher, increase the corresponding SD to allow the MCMC to search a
larger parameter space. Conversely, if the acceptance rate is much lower, lower the
corresponding SD to allow the MCMC to focus searches in a smaller parameter space.
You may want to do a few short runs (a few thousands of iterations) to choose the best
SD values. sd.tau and sd.rho specify SDs for τ and ρ, respectively, of DNMT1, the
DNMT3s on the parent strand and the DNMT3s on the daughter strand. Note that
the acceptance rate may never achieve 20-30% when the data are not informative for a
parameter. Experimenting with different values of SD for this parameter can give you
a good idea whether this is the case.

6.3 Advanced options

• Fixing measurement error rate c to be constant. The user can achieve this by setting
ESTIMATE.C=FALSE. The value specified by c.curr is used as the fixed value for c
throughout the program. Values in c.ub and c.lb are ignored.

• Prior distributions on ρ. Three options, uniform, logunif and jeffreys, are available
for RHO.PRIOR.

– uniform assigns a uniform prior to each of the three ρs.

– logunif assigns a log10 uniform (uniform on the log10 scale) prior to each of the
three ρs.

– jeffreys assigns a Jeffreys prior (a beta(1/2, 1/2) distribution for proportions)
to each of the three ρs.

When the first two options are used, the user also needs to specify the lower and upper
bound in the prior distribution in rho.lower and rho.upper. Elements in either
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vector correspond to values for DNMT1, the DNMT3s on the parent strand and the
DNMT3s on the daughter strand. When RHO.PRIOR="jeffreys", values in rho.lower

and rho.upper are ignored.

• Prior distributions on τ . Similar to the above.

• Estimating the maintenance and de novo activity rates of a class of enzymes.

– Setting DNMT1.EST=1, the user may estimate the two rates for DNMT1 (on the
daughter strand).

– Setting DNMT3.EST=1, the user may estimate the two rates for the DNMT3s on
the daughter strand.

– If DNMT1.EST=1 and DNMT3.EST=1, the program estimates the maintenance and de
novo activity probabilities for both DNMT1 and the DNMT3s on the daughter
strand. These two processes then are modelled identically. To distinguish the
two processes in estimation, the user should set additional constraints, such as
constraining τM and τRD to take on values in different ranges. For example, the
user can set

TAU.PRIOR = "unif"

tau.lower = c(0.05, 0, 0)

tau.upper = c(1, 1, 0.05)

The user may want to run the program with DNMT3.EST=0 first to get an idea
what characteristics help distinguish the two processes.

7 Running the program on in vitro data

For a test run, use main test invitro.R and refer to Sec 2 in this manual for different ways
of running it.

In vitro mouse Dnmt1 data taken from [6] and [7] contain only one strand from each
double-stranded pattern. This is because the other strand in each pattern is the template
strand, which is fully methylated. Not all template strands are fully methylated in [7], but
double-stranded data are not provided there. Use main test invitro.R as the template R
file. Note the following settings:

• Reformatting of the data to create double-stranded patterns.

• Setting the last two values in tau.curr to 0 and the last two values in rho.curr to 1.
This sets the activity of the DNMT3s to 0.

• Setting the last two values in sd.tau and sd.rho to 0. This means that the program
does not update τRP and τRD. In other words, activities of the DNMT3s are fixed to
0 throughout the estimation procedure.
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• Setting DNMT1.EST=0. The program then assumes DNMT1 methylates only hemimethy-
lated CpG sites. This is because the CpG sites in the in vitro data are all hemimethy-
lated, or at least assumed so.

• Setting site-specific methylation probabilities mj, j = 1, . . . , S, to 1 for DNMT1 in
vitro data and to 0 for DNMT3A in vitro data. This is because one of the two strands
would have been methylated prior to reaction with DNMT1 in the former case, and
neither strand would be methylated prior to reaction with DNMT3A in the latter case.
When mjs are set to 0, mean rm and scale variance gm are set to 0 and omitted in the
inference, too.
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