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To my parents



Through the lens of statistics, we unravel the mysteries of life.
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ABSTRACT

Genetic association studies have successfully identified numerous genetic variants associated

with complex diseases and gene expression levels, providing unprecedented opportunities

to discover new biology through downstream analyses. Examples of such analyses include

multivariate methods, which can enhance the power to detect signals by borrowing infor-

mation across similar or correlated conditions; fine-mapping analysis, which aims to identify

potentially causal loci among many highly correlated genetic variants; and Mendelian ran-

domization, which estimates the causal effect of one trait on another using genetic variants

as instruments.

In this dissertation, we focus on improving methods for downstream analysis, with the

goal of enhancing the power of statistical inference. In Chapter 2, we improve the fitting

algorithm of a widely used multivariate method, the multivariate adaptive shrinkage (MASH)

by Urbut et al. [2019]. In Chapter 3, we develop a new method for fine-mapping time-to-event

outcomes, building on the existing "Sum of Single Effects" (SuSiE) fine-mapping approach

by Wang et al. [2020]. In Chapter 4, we address the challenges associated with the small

sample sizes of within-family genotype data. Specifically, we develop methods to improve the

efficiency of estimates derived from within-family data, which also lead to variance reduction

in Mendelian randomization.
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CHAPTER 1

INTRODUCTION

Genetic association studies, such as genome-wide association studies (GWASs) and molecular

quantitative trait locus (molQTL) mapping, have successfully identified numerous genetic

variants linked to complex human traits and molecular phenotypes [Uffelmann et al., 2021,

Abdellaoui et al., 2023, Visscher et al., 2017, Aguet et al., 2023, Gibson et al., 2015]. The

extensive summary statistics generated from these studies offer unprecedented opportunities

to uncover new biology. Traditionally, genetic association studies are conducted using a

single-locus model under a single condition, where a single-nucleotide polymorphism (SNP)

is tested for association with a trait of interest in a cohort of largely unrelated individuals.

While this approach has been effective, it also presents challenges and opportunities for

improving downstream analysis.

Opportunity 1: Enhancing statistical power beyond single condition analysis

While condition-by-condition analysis is simple and straightforward, it is not optimal

for detecting significant signals. The widespread pleiotropy observed in the human genome

indicates substantial biological overlap among different traits [Watanabe et al., 2019, Turley

et al., 2018, Zou et al., 2023, Turchin and Stephens, 2019]. Additionally, in gene expression

QTL (eQTL) analyses across multiple tissues, many eQTLs are found to have effects across

multiple tissues or subsets of tissues [GTEx Consortium et al., 2015, Urbut et al., 2019, Bar-

beira et al., 2020, Natri et al., 2024]. Therefore, a more effective approach for analyzing such

data is through multivariate analysis, which leverages information across similar conditions

to improve the power of detecting significant units.

One key challenge in the multivariate analysis is to account for heterogeneous effect-

sharing patterns—for instance, different eQTLs may act in different subsets of tissues and

with different effect sizes. Empirical Bayes (EB) methods [Flutre et al., 2013, Urbut et al.,

2019] offer an attractive solution by first estimating a “prior distribution" that captures the
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sharing and similarity of effects across conditions, and then using Bayes theorem to combine

the prior with observed data, thereby improving effect size estimation.

However, learning the complex sharing patterns from data is both statistically and com-

putationally challenging, as it involves fitting a mixture of multivariate normals prior with

unknown covariance matrices. In the multivariate adaptive shrinkage (MASH) proposed by

Urbut et al. [2019], a two-stage procedure is employed to address these challenges. In the

first stage, sharing patterns are estimated using an algorithm called “Extreme Deconvolu-

tion" (ED) by Bovy et al. [2011]. In the second stage, given the covariances estimated in the

first stage, the mixture proportions in the prior are estimated by maximizing the likelihood

across all data. However, we have noticed several limitations of the ED algorithm: it can

be slow to converge, results are sensitive to initialization, and estimated covariance matrices

can be quite unstable, particularly when the number of conditions, R, is large relative to the

sample size, n.

In Chapter 2, we aim to improve the first step estimation in MASH. We describe new

empirical Bayes methods that provide improvements in both speed and accuracy over existing

methods. The two key ideas behind the methods are: (1) adaptive regularization to improve

accuracy in high-dimensional settings with many conditions; (2) improving the speed of the

model fitting algorithms by exploiting analytical results on the properties of the covariance

matrices. Additionally, we provide an R package, udr (“Ultimate Deconvolution in R”),

available at https://github.com/stephenslab/udr, which implements all these methods

with a convenient user-friendly interface.

Problem 2: Extremely high correlations among nearby genetic variants due

to Linkage Disequilibrium (LD)

Although GWASs have identified many significant variants associated with complex hu-

man traits, many of these are not causal variants. Non-causal genetic variants can also be

significant in GWAS if they are correlated with nearby causal variants. Fine-mapping is an

2
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analysis tool designed to identify putatively causal variants that contribute to these traits.

Genetic fine-mapping is often framed as a variable selection problem based on multiple

regression models, where the outcome is the trait of interest, and the candidate predictor

variables are the available genetic variants. Performing variable selection helps identify vari-

ants that may causally affect the trait. There are two key challenges specific to genetic

fine-mapping as a variable selection problem. First, nearby genetic variants are often highly

correlated, with many pairs having correlations greater than 0.99 or even equaling 1, mak-

ing the inference even harder. Therefore, it is crucial for fine-mapping methods to have

uncertainty quantification about which variables to select, and as a result, Bayesian vari-

able selection in regression (BVSR) methods are often preferred in fine-mapping [Sillanpaa

and Bhattacharjee, 2005, Servin and Stephens, 2007, Guan and Stephens, 2011, Carbonetto

et al., 2012, Hormozdiari et al., 2014, Wallace et al., 2015, Newcombe et al., 2016, Wen et al.,

2016].

Second, a genomic region usually contains thousands of SNPs, making the problem high

dimensional. Therefore, it is crucial to develop methods that enable fast and scalable com-

putation. Motivated by these demands, Wang et al. [2020] proposed a new fine-mapping

approach, the “Sum of Single Effects" (SuSiE) regression. SuSiE reformulated the multi-

ple regression model as the sum of multiple single effect regression models of Servin and

Stephens [2007], where each single effect vector contains exactly one non-zero effect variable.

This new reformulation not only leads to fast computation of posterior inference, but also

provides convenient novel summaries of uncertainty, offering a Credible Set of variables for

each selection. These features have made SuSiE widely used for fine-mapping.

Previous method development for fine-mapping has primarily focused on quantitative

traits, such as height and body mass index. More recently, with the increasing of electronic

health records linked to large biobanks, analyzing time-to-event (TTE) phenotypes—such

as disease age of onset and progression—has become more common in genetics, providing
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critical insights into the genetics of disease development and progression. A unique challenge

in analyzing TTE data is that the time-to-event may not be observed for every individual, a

phenomenon known as “censoring". A simple solution is to exclude individuals with missing

outcomes and treat the time-to-event phenotype as a quantitative trait. This is not ideal

as censored individuals still provide partial information—they have not yet experienced the

event by the time they are censored. Fortunately, many statistical models have been de-

veloped to account for censoring, with one of the most widely used being the proportional

hazards (PH) model by Cox [1972], commonly known as the CoxPH model.

In Chapter 3, we develop a new fine-mapping method for time-to-event phenotypes,

where we extend the SuSiE framework to CoxPH model, which we refer to as CoxPH-SuSiE.

CoxPH-SuSiE uses the same parameterization for covariates and a similar model-fitting

procedure as SuSiE, thereby inheriting SuSiE’s advantages. In our simulations, CoxPH-

SuSiE outperformed other variable selection methods for TTE data. We also applied CoxPH-

SuSiE to fine-map self-reported asthma cases in the UK Biobank.

Problem 3: GWAS effect estimates also capture contributions from the geno-

types of an individual’s family members.

The primary goal of GWAS is to estimate the direct effect of an individual’s genetic

variation on his/her own trait. However, the marginal association from a single-locus model

also reflects other factors beyond the direct effect of the variant [Veller and Coop, 2024,

Davies et al., 2019]. The effect size estimate of a SNP includes contributions from other causal

SNPs in linkage disequilibrium (LD), which is the focus of Chapter 3 of this dissertation.

In Chapter 4, we focus on another source of bias: the contributions from the genotypes of

the individual’s family members, and we call these effects the indirect genetic effects. One

example is the genetic nurture effect, where parental genotype influences offspring outcomes

by shaping the environment provided by the parents [Kong et al., 2018], see also Figure 1.1.

Failing to adjust for indirect genetic effects can lead to biases in Mendelian randomization
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Figure 1.1: An illustration of genetic nurture path from Hart et al. [2021]

(MR). The genetic nurture path in the outcome trait opens a backdoor path between the

genetic variants and the outcome, violating the independence assumption of MR [Brumpton

et al., 2020, Davies et al., 2019]. Young et al. [2019] suggest that GWAS should be performed

using family-based genotype data and models that account for indirect genetic effects. How-

ever, family-based genotype data is much less prevalent than population-based genotype

data worldwide. As a result, estimates derived from family data have larger standard errors

and are less precise.

In Chapter 4, we focus on reducing the variance of estimates derived from family-based

genotype data. Following Chen and Chen [2000], we developed a variance calibration ap-

proach in the regression context that leverages information from large external datasets,

which may not include family genotype data, such as population-based GWAS summary

statistics. We use the biased estimates from large population studies to improve the effi-

ciency of family-based estimates.
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CHAPTER 2

IMPROVED METHODS FOR EMPIRICAL BAYES

MULTIVARIATE MULTIPLE TESTING AND EFFECT SIZE

ESTIMATION

Abstract

Estimating the sharing of genetic effects across different conditions is important to many

statistical analyses of genomic data. The patterns of sharing arising from these data are

often highly heterogeneous. To flexibly model these heterogeneous sharing patterns, Urbut

et al. [2019] proposed the multivariate adaptive shrinkage (MASH) method to jointly ana-

lyze genetic effects across multiple conditions. However, multivariate analyses using MASH

(as well as other multivariate analyses) require good estimates of the sharing patterns, and

estimating these patterns efficiently and accurately remains challenging. Here we describe

new empirical Bayes methods that provide improvements in speed and accuracy over existing

methods. The two key ideas are: (1) adaptive regularization to improve accuracy in settings

with many conditions; (2) improving the speed of the model fitting algorithms by exploiting

analytical results on covariance estimation. In simulations, we show that the new methods

provide better model fits, better out-of-sample performance, and improved power and accu-

racy in detecting the true underlying signals. In an analysis of eQTLs in 49 human tissues,

our new analysis pipeline achieves better model fits and better out-of-sample performance

than the existing MASH analysis pipeline. We have implemented the new methods, which

we call “Ultimate Deconvolution”, in an R package, udr, available on GitHub.
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2.1 Introduction

The problem of testing and estimating effect sizes for many units in multiple conditions (or on

multiple outcomes) arises frequently in genomics applications. Examples include assessing

the effects of many expression quantitative trait loci (eQTLs) in multiple tissues [GTEx

Consortium et al., 2015] and assessing the effects of many genetic variants on multiple traits

[Zhou and Stephens, 2014, Pickrell et al., 2016, Turchin and Stephens, 2019, Udler et al.,

2018, Zou et al., 2024]. The simplest approach to assessing effects in multiple conditions

is to analyze each condition separately. However, this fails to exploit sharing or similarity

of effects among conditions. For example, a genetic variant that increases expression of a

particular gene in the heart may similarly increase expression in other tissues, particularly in

tissues that are related to heart. Such sharing of effects could be exploited to improve power

and estimation accuracy by borrowing information across conditions. This is, in essence, the

motivation for meta-analysis methods [Willer et al., 2010, Han and Eskin, 2011, Wen and

Stephens, 2014], and more generally it motivates consideration of multivariate approaches

to multiple testing and effect size estimation [Urbut et al., 2019].

While borrowing information across conditions may be a natural idea, getting it to work

well in practice requires confronting some thorny issues. One challenge is that the extent

to which effects are shared among conditions will vary among data sets; for example, data

sets involving very similar conditions may have very high levels of sharing, whereas data sets

involving very different conditions may exhibit little to no sharing. Furthermore, some data

sets may include some conditions that are very similar and others that are very dissimilar,

and these differences may be difficult to specify in advance. Assessing the sharing and

similarity of effects among conditions may also be an important goal in itself.

Empirical Bayes (EB) approaches (e.g., Flutre et al. 2013, Urbut et al. 2019) provide an

attractive way to confront these challenges. EB methods estimate a prior distribution that

captures the sharing or similarity of effects among the conditions, then, using Bayes theorem,
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they combine the prior with the observed data to improve the effect estimates. The methods

proposed in Urbut et al. [2019] and implemented in the R package mashr assume a mixture

of multivariate normal distributions for the prior, which has the twin advantages of being

both flexible and computationally convenient. Indeed, mashr has been used to analyze very

large data sets involving many conditions [Zou et al., 2024, Lin et al., 2024, Urbut et al.,

2021, Barbeira et al., 2020, Araujo et al., 2023, Li et al., 2022, Soliai et al., 2021, Natri et al.,

2024, Bonder et al., 2021].

Despite this, these methods still have considerable limitations; in particular, fitting a

mixture of multivariate normals prior with unknown covariance matrices raises statistical

and computational challenges. Urbut et al. [2019] used a two-stage procedure to deal with

(or sidestep) these challenges: in the first stage, the covariance matrices in the prior were

estimated by maximum-likelihood on a subset of the data (using the “Extreme Deconvo-

lution” algorithm of Bovy et al. 2011); next, given the covariances estimated in the first

stage, the second stage estimated the mixture proportions in the prior by maximzing the

likelihood from all the data (using the fast optimization algorithms of Kim et al. 2020). The

second stage is a convex optimization problem, and can be solved efficiently and reliably for

very large data sets. The first stage, however, presents several challenges, including that

the Extreme Deconvolution (ED) algorithm can be slow to converge, the results of running

ED are often sensitive to initialization, and the estimated covariance matrices can be quite

unstable, particularly when the number of conditions, R, is large relative to sample size,

n. These challenges motivated this work, which is a closer examination of these challenges

from both a statistical perspective and a computational one. One of the contributions of

this study is a new algorithm, which we call “truncated eigenvalue decomposition” (TED).

TED often converges much faster than ED (noting that ED applies to some settings where

TED does not). We also explore the use of simple regularization schemes that can improve

accuracy compared with maximum-likelihood estimation, particularly when the sample size

8



n is small and the number of conditions R is large (that is, the ratio R/n is large). And

we highlight some problems that arise from using low-rank covariance matrices, which was

a strategy previously suggested in Urbut et al. [2019] to reduce the number of estimated

parameters. We provide an R package, udr (“Ultimate Deconvolution in R”), available at

https://github.com/stephenslab/udr, which implements all these methods described

here within a convenient, user-friendly interface, and that interacts well with our previous R

package, mashr [Urbut et al., 2019].

This chapter is structured as follows. Section 2.2 summarizes notation used in the math-

ematical expressions throughout this chapter. Section 2.3 formally introduces the models,

priors and regularization schemes considered, and Section 2.4 describes the model-fitting

algorithms and procedures. Section 2.5 evaluates the performance of the different methods

and algorithms on data sets simulated under a variety of scenarios. Section 2.6 applies the

improved methods to an analysis of a large, multi-tissue eQTL data set from the GTEx

Project. Finally, Section 2.7 discusses the promise and limitations of our methods, and

future directions.

2.2 Notation used in the mathematical expressions

For the mathematical expressions below, we use bold, capital letters (A) to denote matrices;

bold, lowercase letters (a) to denote column vectors; and plain, lowercase letters (a) to

denote scalars. For a matrix A, ∥A∥∗ denotes its nuclear norm, AT denotes its transpose,

A−1 denotes its inverse, A−T denotes the inverse of AT , tr(A) denotes the trace, and |A|

denotes the matrix determinant. We use 0 and 1 to denote the vectors whose elements are

all zeros and all ones respectively; er for the standard basis vector er = (0, . . . , 0, 1, 0, . . . , 0)

with the 1 appearing in the rth position; IR is the R × R identity matrix; and diag(a)

denotes the diagonal matrix in which the diagonal entries are given by the entries of vector

a. We use R for the set of real numbers, RR for the set of real-valued vectors of length R,
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and Rn×m for the set of real-valued n×m matrices. We use N(µ, σ2) to denote the normal

distribution on R with mean µ and variance σ2, and N( · ;µ, σ2) denotes its density. And

we use NR(µ,Σ) for the multivariate normal distribution on RR with mean µ ∈ RR and

R × R covariance matrix Σ, and NR( · ;µ,Σ) denotes its density. We use P+
R ⊆ RR×R to

denote the set of real-valued R × R (symmetric) positive semi-definite matrices. SR ⊆ RR

denotes the R-dimensional simplex.

2.3 The empirical Bayes multivariate normal means model

In this section, we define the “empirical Bayes multivariate normal means” (EBMNM) model.

We describe several variations of this model that involve constraints or penalties on the model

parameters.

The EBMNM model assumes that we observe vectors xj ∈ RR, that are independent,

noisy, normally-distributed measurements of underlying true values θj ∈ RR:

xj | θj ∼ NR(θj ,Vj), j = 1, . . . , n, (2.1)

in which the covariances Vj ∈ P+
R are assumed to be known and invertible. Our ultimate goal

is to perform inference for the unknown means θj from the observed data xj . This model

is a natural generalization of the well-studied (univariate) normal means model [Robbins,

1951, Efron and Morris, 1972, Stephens, 2017, Bhadra et al., 2019, Johnstone, 2019, Sun,

2020], and so we call it the “multivariate normal means model”. An important special case

is when the measurement error distribution is the same for all observations; i.e., Vj = V ,

j = 1, . . . , n. We refer to this as the “homoskedastic” case. Some of our computational

methods are designed specifically for the homoskedastic case, which is easier to solve than

the “heteroskedastic” case.

The EBMNM model (2.1) further assumes that the unknown means are independent
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and identically distributed draws from some distribution, which we refer to as the “prior

distribution”. While other choices are possible, here we assume the prior distribution is a

mixture of zero-mean multivariate normals:

p(θj | π,U) =
K∑
k=1

πkNR(θj ;0,Uk), (2.2)

where π ∈ SK is the set of mixture proportions, Uk ∈ P+
R are covariance matrices, and

U := {U1, . . . ,UK} denotes the full collection of covariance matrices.

Combining (2.1) and (2.2) yields the marginal distribution

p(xj | π,U) =
K∑
k=1

πkNR(xj ;0,Uk + Vj), (2.3)

and the marginal log-likelihood,

ℓ(π,U) :=
n∑

j=1

log p(xj | π,U)

=
n∑

j=1

log
K∑
k=1

πkNR(xj ;0,Uk + Vj) (2.4)

The EB approach to fitting the model (2.1–2.2) proceeds in two stages:

1. Estimate the prior parameters π,U by maximizing a penalized log-likelihood,

(π̂, Û) := argmax
π ∈SK ,Uk ∈P

+,k
R

ℓ(π,U)−
K∑
k=1

ρ̃(Uk), (2.5)

where ρ̃ denotes a penalty function introduced to regularize Uk, and P
+,k
R ⊆ P+

R allows

for constraints on Uk (which may be different for each component of the mixture). The

exact penalties and constraints considered are described below. When P
+,k
R = P+

R and

ρ̃(Uk) = 0 for all Uk, solving (2.5) corresponds to maximum-likelihood estimation of
11



π,U .

2. Compute the posterior distribution for each θj given π,U estimated in the first stage:

ppost(θj) := p(θj | xj , π̂, Û)

∝ p(xj | θj) p(θj | π̂, Û). (2.6)

The posterior distributions (2.6) have an analytic form, and are mixtures of multivariate

normal distributions (see for example Urbut et al. 2019, Bovy et al. 2011 and Supplemen-

tary Section A.1). Since these posterior distributions have a closed form, it is relatively

straightforward to compute posterior summaries such as the posterior mean and posterior

standard deviation, and measures for significance testing such as the local false sign rate

(lfsr) [Stephens, 2017]. Therefore, we focus on methods for accomplishing the first step,

solving (2.5).

2.3.1 A reformulation to ensure scale invariance

Intuitively, one might hope that changing the units of measurement of all the observed

xj would simply result in corresponding changes to the units of the estimated θj . This

idea can be formalized as requiring that solutions of the EBMNM model should obey

a “scale invariance” property. This consideration motivates us to reformulate (2.5). Let

θ̂j(x1, . . . ,xn,V1, . . . ,Vn) denote the posterior mean for θj computed by solving the EBMNM

problem with data x1, . . . ,xn,V1, . . . ,Vn. We say that the solution is “scale invariant” if,

for any s > 0, the following holds:

θ̂j(sx1, . . . , sxn, s
2V1, . . . , s

2Vn) = sθ̂j(x1, . . . ,xn,V1, . . . ,Vn). (2.7)

12



That is, multiplying all the observed data points by s (which multiplies the corresponding

error variance by s2) has the effect of multiplying the estimated means by s. (Note: we state

scale invariance in terms of the posterior means only for simplicity; the concept is easily

generalized to require that the whole posterior distribution for θj scales similarly.)

Without the penalty ρ̃ in (2.5), it is easy to show that the scale invariance property (2.7)

holds provided that the constraints satisfy Uk ∈ P
+,k
R =⇒ skUk ∈ P

+,k
R ,∀sk > 0. With

penalty, scale invariance holds provided that ρ̃(U ) = ρ̃(sU ),∀s,U ; that is, provided that

the penalty function depends only on the “shape” of U and not on its “scale”. To ensure

scale invariance, we therefore consider penalties of the form

ρ̃(U) = min
s> 0

ρ(U/s), (2.8)

where ρ is a penalty that may depend on both the shape and scale of U . To give some

intuition, suppose that ρ encourages all the eigenvalues of U to be close to 1. Then ρ̃ will

encourage the eigenvalues to be close to each other, without requiring that they specifically

be close to 1. Therefore, plugging (2.8) into (2.5), we have

(π̂, Û) := argmax
π ∈SK ,Uk ∈P

+,k
R , s>0

ℓ(π,U)−
K∑
k=1

ρ(Uk/sk), (2.9)

where s := (s1, . . . , sK). We use (2.9) for the remainder of this chapter.

2.3.2 Constraints and penalties

Estimating covariance matrices in high-dimensional settings (i.e., large R) is known to be a

challenging problem (e.g., Johnstone and Paul 2018, Fan et al. 2016, Ledoit and Wolf 2022).

Even in the simpler setting of independent and identically distributed observations from a

single multivariate normal distribution, the maximum-likelihood estimate of the covariance
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matrix can be unstable, and so various covariance regularization approaches have been pro-

posed to address this issue [Ledoit and Wolf, 2004, Friedman et al., 2008, Cai and Liu, 2011,

Won et al., 2013, Chi and Lange, 2014]. Interestingly, in the context of using EBMNM for

significance testing, adding penalties have additional benefits (see the numerical experiments

below).

We consider two different penalties that have been previously used for covariance regu-

larization:

1. The “inverse Wishart” (IW) penalty:

ρIWλ (U) :=
λ

2
{log |U |+ tr(U−1)} (2.10)

=
λ

2

R∑
r=1

(
log er + 1/er

)
. (2.11)

2. The “nuclear norm” (NN) penalty:

ρNN
λ (U) :=

λ

2
{0.5∥U∥∗ + 0.5∥U−1∥∗} (2.12)

=
λ

2

R∑
r=1

(
0.5er + 0.5/er

)
. (2.13)

Here, e1, . . . , eR denote the eigenvalues of U , and λ > 0 controls the strength of the penalty.

We chose λ = R in our simulations, but one could also use cross-validation to select λ.

The IW penalty on Uk corresponds to maximum a posteriori (MAP) estimation of Uk

under an inverse-Wishart prior, with prior mode IR and λ−R−1 degrees of freedom [Fraley

and Raftery, 2007]. This penalty was also mentioned (but not used or evaluated) in Bovy

et al. [2011].

The nuclear norm penalty was studied as an alternative to the IW penalty for estimation

of covariance matrices in Chi and Lange [2014]. They claimed that “In this paper, we
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introduce a novel prior which effects the desired adjustment on the sample eigenvalues.

Maximum a posteriori (MAP) estimation under the prior boils down to a simple nonlinear

transformation of the sample eigenvalues." To our knowledge, this penalty has not been

studied in the EBMNM setting. The nuclear norm penalty in Chi and Lange [2014] includes

a hyperparameter α ∈ (0, 1) that controls the balance between ∥U∥∗ and ∥U−1∥∗, but our

approach to ensuring scale-invariance has the consequence that changing α is equivalent to

changing λ (see Supplementary Section A.7), so we set α = 0.5.

As can be seen from (2.11) and (2.13), both penalties depend only on the eigenvalues of

U , and decompose into additive functions of the R eigenvalues. Both penalties are minimized

when U = IR, and more generally encourage U to be well-conditioned by making it closer

to the identity matrix (by pushing the eigenvalues closer to 1).

As an alternative to penalized estimation of U , we also consider estimating U under

different constraints:

1. A scaling constraint, Uk = ckU0k, for some chosen U0k ∈ P+
R .

2. A rank-1 constraint, Uk = uku
T
k , for some uk ∈ RR.

The scaling constraint could be useful for situations in which the θj may obey an expected

sharing structure, or for sharing structures that are easier to interpret. For example, U0k =

IR captures the situation in which all the effects θj1, . . . , θjR are independent, and U0k =

11T captures the situation in which all the effects θj1, . . . , θjR are equal. Such covariances

are referred to as “canonical” covariance matrices in Urbut et al. [2019].

The rank-1 constraint also leads to potentially more interpretable covariance matrices,

and can be thought of as a form of regularization because low-rank matrices have fewer

parameters to be estimated. It may also allow for faster computations. Urbut et al. [2019]

in fact make extensive use of the rank-1 constraint. However, our results will show that

this constraint can cause problems for significance testing and so may be better avoided in

practice.
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2.4 Fitting the EBMNM model

We now describe three algorithms we have implemented for fitting variations of the EBMNM

model described above: the ED algorithm from Bovy et al. 2011; an algorithm based on

methods commonly used in factor analysis (FA); and another based on the truncated eigen-

value decomposition (TED). Each of these algorithms applies to a subset of EBMNM models

(Table 2.1). In some situations, only one algorithm can be applied; for example, only ED

can handle heteroskedastic variances with no constraints on U . However, in other settings

all three algorithms can be applied (e.g., homoskedastic errors, no constraints on U). Be-

low, we empirically assess the relative merits of the different algorithms in simulations, see

also Supplementary Tables A.1 and A.2 for a comparison of the algorithms’ computational

properties in the different settings.

constraints on U

none rank-1

algorithm hom. het. hom. het.

ED ✓ ✓

FA ✓ ✓ ✓

TED ✓ ✓

Table 2.1: Summary of the EBMNM algorithms and the situations in which they apply. In
this table we consider 4 variations of EBMNM: no constraint on U or a rank-1 constraint;
and homoskedastic (hom.) errors (all Vj are the same) or heteroskedastic (het.) errors (one
or more Vj differ). Abbreviations used in this table are: ED = Extreme Deconvolution), FA
= factor analysis, TED = truncated eigenvalue decomposition. A checkmark (✓) indicates
that the algorithm (ED, FA, TED) can be applied to the particular variation. Note that
fitting U with a scaling constraint involves only a 1-d optimization and is treated separately.
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2.4.1 Algorithms for the single-component EBMNM model with no penalty

While these algorithms are implemented for the mixture prior (2.2) with the penalties de-

scribed above, the algorithms are much easier to describe in the special case of one mixture

component (K = 1), and without penalty. So initially we focus on this simpler case, and

later we extend to the general form with penalties and K ≥ 1.

With K = 1 and no penalty, the prior is θj ∼ N(0,U), the model is

xj | U ∼ NR(0,U + Vj), j = 1, . . . , n. (2.14)

and the goal is to compute the maximum-likelihood estimate of U :

Û := argmax
U ∈P+

R

n∑
j=1

logNR(xj ;0,U + Vj) (2.15)

The three algorithms for solving (2.15) are as follows.

Truncated Eigenvalue Decomposition (TED) This algorithm, which to the best of our

knowledge is new in this context, exploits the fact that, in the special case where Vj = IR,

j = 1, . . . , n, the maximum-likelihood estimate (2.15) can be computed exactly. At first

glance, one might try to solve for Û by setting Û + IR to the sample covariance matrix,

S :=
∑n

j=1 xjx
T
j /n, then recovering Û as Û = S−IR. However, S−IR is not necessarily a

positive semi-definite matrix; that is, it may have one or more eigenvalues that are negative.

One could deal this problem by setting the negative eigenvalues to zero, and indeed this

approach is correct; that is, letting (S)+ be the matrix obtained from S by performing an

eigenvalue decomposition of S and truncating its negative eigenvalues to 0, Û = (S − IR)+

is the maximum-likelihood estimate of U [Tipping and Bishop, 1999]. This idea can also be

used to solve the more general case, Vj = V , essentially by transforming the data to R−1xj

where V = RRT , estimating R−1UR−T from this transformed data, then reversing this
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transformation, see Supplementary Section A.4.

Extreme Deconvolution (ED) This is an EM algorithm [Dempster et al., 1977], an

iterative approach to solving (2.15); the name comes from Bovy et al. [2011]. ED uses the

natural “data augmentation” representation of (2.14):

θj ∼ NR(0,U)

xj | θj ∼ NR(θj ,Vj).

(2.16)

Following the usual EM derivation, the updates can be derived as

Unew =
1

n

n∑
j=1

Bj + bjb
T
j , (2.17)

where bj and Bj are, respectively, the posterior mean and covariance of θj given U :

bj := U(U + Vj)
−1xj (2.18)

Bj := U −U(U + Vj)
−1U . (2.19)

The update (2.17) is guaranteed to increase (or not decrease) the objective function in (2.15),

and repeated application of (2.17–2.19) will converge to a stationary point of the objective.

Factor analysis (FA) This is also an EM algorithm, but based on a different data aug-

mentation than ED; the name comes from its close connection to EM algorithms for factor

analysis models [Ghahramani and Hinton, 1996, Rubin and Thayer, 1982, Zhao et al., 2008,

Liu and Rubin, 1998, McLachlan and Peel, 2000]. In its simplest form, the FA approach

imposes a rank-1 constraint on U , U = uuT , where u ∈ RR is to be estimated. The model
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(2.14) then admits the following data augmentation representation:

aj ∼ N(0, 1)

xj | u,Vj , aj ∼ N(aju,Vj).

(2.20)

The usual EM derivation gives the update

unew =

( n∑
j=1

(µ2j + σ2j )V
−1
j

)−1( n∑
j=1

µjV
−1
j xj

)
, (2.21)

in which µj and σ2j denote, respectively, the posterior mean and posterior covariance of aj

given u,

µj := σ2ju
TV −1j xj (2.22)

σ2j := 1/(1 + uTV −1j u). (2.23)

The update (2.21) is guaranteed to increase (or not decrease) the objective function in

(2.15), and repeated application of (2.21–2.23) will converge to a stationary point of the

objective. These updates can be extended to higher-rank covariances where the goal is to

find the maximum-likelihood estimate subject of U subject to U having rank at most R′,

where R′ ≤ R. However, when R′ > 1, the updates have closed-form expressions only for

homoskedastic errors, Vj = V .

The three algorithms have different strengths and weaknesses, and different settings to

which they apply (Table 2.1). The TED algorithm has the advantage of directly computing

the maximum-likelihood estimate, which seems preferable to an iterative approach. However,

TED only applies in the case of homoskedastic errors. The ED approach is more general,

applying to both heteroskedastic and homoskedastic errors, although it cannot fit rank-1

matrices. The FA approach is attractive for low-rank matrices, particularly for fitting rank-
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1 matrices.

Our claim that ED cannot fit rank-1 covariance matrices deserves discussion, especially

since Urbut et al. [2019] used ED to fit such matrices. As pointed out by Urbut et al. [2019],

if ED is initialized to a low-rank matrix with rank R′, then the updated estimates (2.17)

are also rank (at most) R′. Thus, if ED is initalized to a rank-1 matrix, the final estimate

is also rank-1. However, the ED estimates are not only low rank, but also span the same

subspace as the initial estimates, a property we refer to as “subspace-preserving”. Thus, if

ED is initialized to U = uuT , the updated estimates will be of the form auuT for some

scalar a. In other words, the ED update does not change rank-1 matrices, except by a scaling

factor, and so the final estimate will simply be proportional to the initial estimate. This

flaw motivated us to implement the FA method. However, as our numerical comparisons

will illustrate, the rank-1 matrices turn out to have other drawbacks that lead us not to

recommend their use anyhow.

2.4.2 Extending the algorithms to a mixture prior

All of the algorithms—TED, ED and FA—can be generalized from the K = 1 case to

the K ≥ 1 case using the standard EM approach to dealing with mixtures. The resulting

algorithms have a simple common structure, summarized in Algorithm 1. (This algorithm

also allows for an inclusion of a penalty, which is treated in the next section. See also

Supplementary Section A.2 and A.3 for a derivation of this algorithm.) This EM algorithm

involves iterating the following steps: (i) compute the weights, wjk (sometimes called the

“responsibilities”), each which represent the conditional probability that mixture component

k gave rise to observation j given the current estimates of π,U ,

wjk =
πkNR(xj ;0,Uk + Vj)∑K

k′=1 πk′NR(xj ;0,Uk′ + Vj)
; (2.24)
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Algorithm 1: EM for fitting the EBMNM model.
Input: Data vectors xj ∈ RR and correspoding covariance matrices Vj ∈ P+

R ,
j = 1, . . . , n; K, the number of mixture components; initial estimates of the
prior covariance matrices U = {U1, . . . ,UK}, Uk ∈ P

+,k
R , k = 1, . . . , K;

initial estimates of the scaling parameters s = {s1, . . . , sK} ∈ RK ; initial
estimates of the mixture weights π ∈ SK .

Output: U , π.
repeat

for j ← 1 to n do
for k ← 1 to K do

Update wjk using (2.24).
end

end
for k ← 1 to K do

πk ←
∑n

j=1wjk/n
Uk ← argmax

U ∈P+,k
R

ϕ(U ;wk)− ρ(U/sk)

▷ Note that some algorithms compute this argmax inexactly.
sk ← argmins> 0 ρ(Uk/s)

end
until convergence criterion is met;

(ii) update π by averaging the weights (this is the standard EM update for estimating mixture

proportions, and is the same for all the algorithms); (iii) update the covariance matrices U

(this is the step where the algorithms differ); and (iv) update the scaling parameters, s.

(The update of the scaling parameters is the same for all algorithms, and depends on the

chosen penalty. For details, see Supplementary Section A.5.)

With this data augmentation, the updates for the covariance matrices Uk have the fol-

lowing form:

Unew = argmax
U ∈P+,k

R

ϕ(U ;wk), (2.25)

where

ϕ(U ;w) :=
n∑

j=1

wj logNR(xj ;0,U + Vj). (2.26)

The function ϕ can be viewed as a weighted version of the log-likelihood with normal
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prior (2.14), and the updates for this weighted problem are very similar to the updates

for a normal prior. For example, the TED update, which solves the weighted problem

exactly in the case Vj = IR, involves truncating the eigenvalues of Ŝ − IR where Ŝ :=∑n
j=1wjxjx

T
j /(
∑n

j=1wj) is the weighted sample covariance matrix. Details of the TED,

ED and FA updates for weighted log-likelihoods are given in Supplementary Section A.5.

2.4.3 Modifications to the algorithms to incorporate the penalties

With a penalty, the updates (2.25) are instead

Unew = argmax
U ∈P+,k

R , sk > 0

ϕ(U ;wk)− ρ(U/sk). (2.27)

We have adapted the TED approach, in the case Vj = IR, to incorporate either the

IW or NN penalty. These extensions replace the simple truncation of the eigenvalues with

solving R (1-d) optimization problem for each eigenvalue er, see equation (2.11) and (2.13);

while these 1-d optimization problems do not have closed form solutions, they are easily

solved using off-the-shelf numerical methods. This approach can also be applied, via the

data transformation approach, to the general homoskedastic case Vj = V ; however, this

transformation approach implicitly changes the penalty so that it encourages Uk/sk to be

close to V rather than being close to IR. This change in the penalty appears to be necessary

to make the TED approach work when V ̸= IR. See Supplementary Section A.5 for details.

Incorporating an IW penalty into the ED approach is also straightforward [Bovy et al.,

2011] and results in a simple change to the closed-form updates (2.17). The NN penalty

does not result in closed-form updates for ED and so we have not implemented it.

Incorporating penalties into the FA updates may be possible but we have not done so.
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2.4.4 Significance testing

In EBMNM, inferences are based on the posterior distribution, ppost(θj) = p(θj | xj , Û , π̂),

in which Û , π̂ denote the estimates returned by Algorithm 1. To test for significance, we use

the local false sign rate (lfsr), which has been used in both univariate [Stephens, 2017, Xie

and Stephens, 2022] and multivariate [Urbut et al., 2019, Liu et al., 2023, Zou et al., 2024]

settings. The lfsr is defined as

lfsrjr := min{ppost(θjr ≥ 0), ppost(θjr ≤ 0)}. (2.28)

In particular, a small lfsr indicates high confidence in the sign of θjr. The lfsr is robust

to modeling assumptions, which is helpful for reducing sensitivity to the choice of prior

[Stephens, 2017].

2.5 Numerical comparisons

We ran simulations to (i) compare the performance of the different approaches to updating

the covariance matrices Uk; (ii) assess the benefits of the penalties and constraints; and (iii)

assess the sensitivity of the results to the choice of K, the number of mixture components

in the prior.

We used the Dynamic Statistical Comparisons software (https://github.com/steph

enslab/dsc) to perform the simulations. The code and workflowr website is also available

online at https://github.com/yunqiyang0215/udr-paper.

2.5.1 Data generation

We simulated all data sets from the EBMNM model (2.1–2.2); that is, for each data set, we

simulated the “true” means θ1, . . . ,θn ∈ RR from the mixture prior (2.2) then we simulated

observed data, the “noisy” means x1, . . . ,xn ∈ RR, independently given the true means.
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Note that model fitting and inferences were performed using only x1, . . . ,xn; the true means

θ1, . . . ,θn were only used to evaluate accuracy of the inferences. Further, to evaluate the

ability of the model to generalize to other data, we also simulated test sets with true means

θtest1 , . . . ,θtestntest and observed vectors xtest
1 , . . . ,xtest

ntest . These test sets were simulated in the

same way as the training sets.

In all cases, we set the number of mixture components K to 10, with uniform mixture

weights, π1, . . . , π10 = 1/10. We generated the K = 10 covariance matrices U1, . . . ,U10 in

two different ways, which we refer to as the “hybrid” and “rank-1” scenarios:

1. Hybrid scenario. We used 3 canonical covariance matrices, and randomly generated

an additional 7 covariance matrices randomly from an inverse-Wishart distribution

with scale matrix S = 5IR and ν = R + 2 degrees of freedom. The 3 canonical

matrices were as follows: U1 = 5e1e
T
1 , a matrix of all zeros except for a 5 in the top-

left position, which generates “singleton” mean vectors with a single non-zero element,

θj = (θj1, 0, . . . , 0); U2 = 511T , which generates equal means θj = (αj , . . . , αj) for

some scalar αj ; and U3 = 5IR, which generates mean vectors θj that are independent

in each dimension.

2. Rank-1 scenario. We used 5 covariance matrices of the form Uk = 5eke
T
k , k =

1, . . . 5, which generate mean vectors of length R with zeros everywhere except at the

kth position. The remaining 5 covariances were random rank-1 matrices of the form

Uk = uku
T
k , uk ∼ NR(0, IR), k = 6, . . . , 10.

In both scenarios, we simulated large, low-dimension data sets (n = 10,000, R = 5), and

smaller, high-dimension data sets (n = 1,000, R = 50). We refer to these data sets as “large

n/R” and “small n/R”, respectively. To allow comparisons between TED, ED and FA, in all

cases we simulated data sets with homoskedastic errors; that is, Vj = IR, j = 1, . . . , n and

V test
j = IR, j = 1, . . . , ntest.
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2.5.2 Results

Comparison of convergence

We first focused on comparing the convergence of the different updates (TED, ED and

FA). For brevity, we write “TED” as shorthand for “the algorithm with TED updates”, and

similarly for ED and FA. To compare the updates under the same conditions, we used FA

here to fit full-rank covariance matrices, not rank-1 matrices. We ran TED and ED with

and without the IW penalty.
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Figure 2.1: Illustrative examples comparing convergence of TED, ED and FA. Each plot
shows the algorithms’ progress over iterations on a single simulated data set. A and C
show the results for the same data set, and similarly for B and D. In all cases, we ran
2,000 iterations, although in some cases, TED updates stopped early because the updates
converged to a stationary point of the objective (the likelihood or the penalized likelihood).
For examples A and B, no penalty was used; for examples C and D, the inverse Wishart (IW)
penalty was used with penalty strength λ = R. Log-likelihood and penalized log-likelihood
differences are plotted with respect to the (penalized) log-likelihood near the initial estimate.
An initial round of 20 ED iterations common to all the runs (the “warm start”) is not shown
in these plots.

We ran all methods on 100 “large n/R” data sets and 100 “small n/R” data sets simulated
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in the hybrid scenario, setting K = 10 to match the simulated truth. To reduce the likelihood

that the different updates converge to different local solutions, we performed a prefitting stage

in which we ran 20 iterations of ED from a random initial starting point (specifically, the

initialization was πk = 1/10, sk = 1, with randomly generated Uk, k = 1, . . . , 10). We call

this a “warm start”. We then ran each algorithm for at most 2,000 iterations after this warm

start. Figure 2.1 shows illustrative results for two data sets (one large n/R and one small

n/R), and Figure 2.2 summarizes the results across all simulations.

The results in Figure 2.1 illustrate typical behavior. Among the unpenalized updates,

TED and FA converged much more quickly than ED. For the penalized updates, TED still

converged more quickly than ED, but the difference is less striking than without the penalty.

In the small n/R example the three methods appear to have converged to different solutions

(despite the use of a warm start). This is not unexpected due to the non-convexity of the

objective function, and illustrates an important general point to keep in mind: improvements

in the quality of solution obtained may be due to either faster convergence to the solution,

convergence to a local solution with higher objective, or both.
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Figure 2.2: Comparison of convergence of TED, ED and FA. Each plot summarizes the
results from 100 simulations. In each simulation, log-likelihood achieved after (at most) 2,000
iterations was recorded. Panels E and F show differences in the penalized log-likelihoods (IW
penalty, λ = R).

The results in Figure 2.2 confirm that some of the patterns observed in the illustrative

example are true more generally. In the unpenalized case (Panels A–D), TED often arrived
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at a better solution than FA or ED, although in the large n/R setting FA was comparable to

TED (Panel A). In the penalized case, the TED and ED solutions were much more similar

for both large and small n/R (Panels E, F).
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Figure 2.3: Results demonstrating the ability of TED to “rescue” ED. The log-likelihood or
penalized log-likelihood obtained by performing at most 2,000 TED updates is compared
against performing 2,000 iterations of ED, followed by another round of (at most) 2,000
iterations of TED updates (“ED+TED”). Each plot summarizes the results from 100 simu-
lations, the same simulations as in Figure 2.2.

The improved performance of (unpenalized) TED vs. ED could be due either to faster

convergence (e.g., Figure 2.1A) or due to convergence to a better local optimum (e.g., Figure

2.1B). To investigate this, we assessed whether TED can “rescue” ED by running TED

initialized to the ED solution (“ED+TED”). If ED converges to a poorer local optimum,

then TED will not rescue it, and ED+TED will be similar to ED; on the other hand, if ED
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is simply slow to converge, then ED+TED will be similar to TED. The results in Figure 2.3

show that TED usually rescues ED; the ED+TED estimates were consistently very similar

to the TED estimates, regardless of whether a penalty was used or not. This suggests that

the improved performance of TED is generally due to faster convergence.

To assess how additional iterations improve ED’s performance, we reran ED for 100,000

iterations instead of only 2,000. Since these runs take a long time, we examined only a

few simulated data sets randomly selected from the large n/R and small n/R scenarios

(Supplementary Figure A.1). Even after 100,000 iterations, ED fell measurably short of

1,000 updates of TED (average difference of 40.6 log-likelihood units).

In summary, our experiments confirm that, for homoskedastic errors (which is the setting

where all three methods apply), TED exhibited the best performance. This is not unexpected

since TED solves the subproblem (eq. 2.25 or 2.27) exactly whereas ED and FA do not. Our

experiments also show that including a penalty can help improve convergence behavior,

especially for ED. Thus, including the penalty has computational benefits in addition to

statistical benefits demonstrated below.

Comparison of the penalties and constraints

Next we evaluated the benefits of different penalties and constraints for estimation and

significance testing of the underlying means θj . We focused on TED and ED with and

without penalties, and on fitting rank-1 matrices using TED. (Since TED solves the sub-

problem exactly, rather than iteratively, TED should be better than FA in this setting with

homoskedastic variances. The main benefit of FA is that it can fit rank-1 matrices with

heteroskedastic variances.)

We compared methods using the following evaluation measures:

• Plots of power vs. false sign rate (FSR). These plots are similar to the more

commonly-used plots of “power vs. false discovery rate,” but improve robustness and
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generality by requiring “true discoveries” to have the correct sign. The better methods

are those that achieve higher power at a given FSR. See the Supplementary Section

A.8 for definitions.

• Empirical False Sign Rate (FSR). We report the empirical FSR among tests that

were significant at lfsr < 0.05. A well-behaved method should have a small empirical

FSR, certainly smaller than 0.05. We consider an FSR exceeding 0.05 to be indicative

of a poorly behaved method.

• Accuracy of predictive distribution. To assess generalizability of the estimates

of U and π, we compared the marginal predictive density (2.3) in test samples, p(xtest
j |

Û , π̂,V test
j ), against the “ground-truth” marginal predictive density p(xtest

j | U true,πtrue,V test
j ),

where U true,πtrue denote the parameters used to simulate the data. We summarized

the relative accuracy in the predictions as

1

ntest

ntest∑
j=1

log

{
p(xtest

j | U true,πtrue)

p(xtest
j | Û , π̂)

}
. (2.29)

This measure can be interpreted as (an approximation of) the Kullback-Leibler (K-L)

divergence from the true predictive distribution to the estimated predictive distribu-

tion. Smaller K-L divergences are better.
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We simulated 20 data sets with large n/R and another 20 data sets with small n/R under

both the hybrid and rank-1 scenarios (80 data sets in total). In all cases, model fitting was

performed as above, again with K = 10. The results are summarized in Figures 2.4 and

2.5. In all comparisons, we included results from the “oracle” EBMNM model—that is, the

model used to simulate the data—as a point of reference.

Results for the hybrid setting are shown in Figure 2.4. The results show a clear benefit

of using a penalty in the small n/R setting: both IW and NN penalties improved the power

vs. FSR and the accuracy of predictive distributions. For large n/R data sets, the penalties

do not provide a clear benefit, but also do not hurt performance. In both cases TED and

ED perform similarly, suggesting that the poor convergence of ED observed in previous

comparisons may have less impact on performance than might have been expected. The

rank-1 constraints performed very poorly in all tasks, which is perhaps unsurprising since

the true covariances were (mostly) not rank-1.

Results for the rank-1 scenario are shown in Figure 2.5. In this case, imposing rank-1

constraints on the covariance matrices improved predictive performance—which makes sense

because the true covariances were indeed rank-1—but produced worse performance in other

metrics. In particular, the lfsr values from the rank-1 constraint are very poorly calibrated.

This is because, as noted in Liu et al. [2023], the rank-1 constraint leads to lfsr values that

do not differ across conditions; see the Discussion (Section 2.7) for more on this. Penalized

estimation of the covariance matrices (using either a IW or NN penalty) consistently achieved

the best power at a given FSR in both the large n/R and small n/R settings. Interestingly,

(unpenalized) TED performed much worse than (unpenalized) ED in the power vs. FSR for

large n/R. We speculate that this was due to the slow convergence of ED providing sort of

“implicit regularization”. However, explicit regularization via a penalty seems preferable to

implicit regularization via a poorly converging algorithm, and overall penalized estimation

was the winning (or equally winning) strategy across a variety of settings.
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Robustness to mis-specifying the number of mixture components

In the above experiments, we fit all models with a value of K that matched the model used

to simulate the data. In practice, however, K is unknown, and so we must also consider

situations in which K is mis-specified. Intuitively, one might expect that overstating K may

lead to overfitting and worse performance; Urbut et al. [2019] argued however that the use

of the mixture components centered at zero in the prior (2.2) makes it robust to overfitting

because the mean-zero constraint limits their flexibility. Here we assess this claim.
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Figure 2.7: Assessment of robustness to mis-specifying K in “rank-1” simulated data sets.
All the results shown in the plots are averages over the 20 data sets. All data sets were
simulated with K = 10 mixture components.

In these experiments, we analyzed the same 80 data sets as in the previous section

(simulated with K = 10). We fit models with different penalties, constraints and algorithms,

with K varying from 2 to 128. We compared results in both the accuracy of the predictive

distribution (K-L divergence) and the average FSR at an lfsr threshold of 0.05. Results are

shown in Figures 2.6 and 2.7. For large n/R, all model fits except those with the rank-1

constraints were robust to overstating K, with similarly good performance even at K = 128.
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This is generally consistent with the claim in Urbut et al. [2019] that the mixture prior

should be robust to overstating K. However, for small n/R the story is quite different: all

of the unpenalized algorithms eventually showed a decline in performance when K was too

large, presumably due to “overfitting”. In comparison, all the penalized methods were more

robust to overstating K; the performance did not substantially decline as K increased.

The improved robustness of the penalized methods could be achieved in at least two

different ways: they could be using a smaller number of components by estimating some

of the mixture weights πk to be very small; or by estimating some of the components k to

have very similar covariances Uk (or both). To investigate these explanations, we looked at

the models with K = 100 components and recorded the number of “important” components,

defined as components k with πk > 0.01. We found that the penalized methods tended to

produce much fewer “important” components than the unpenalized methods (Supplementary

Figure A.4). Essentially, the penalties have the effect of shrinking each Uk toward the identity

matrix, so a component is assigned a small weight whenever the identity matrix does not

match the truth.

In summary, our results support the use of penalized methods with a large value of K as

a simple and robust way to achieve good performance in different settings.

2.6 Analysis of genetic effects on gene expression in 49 human

tissues

To illustrate our methods on real data, we used the EBMNM model to analyze the effects

of genetic variants on gene expression (“cis-eQTLs”) in multiple tissues. The use of the

EBMNM model for this purpose was first demonstrated in Urbut et al. [2019]. They used

a two-stage procedure to fit the EBMNM models: (i) fit the EBMNM model to a subset of

“strong” eQTLs to estimate the prior covariance matrices; and (ii) fit a (modified) EBMNM

model to all eQTLs—or a random subset of eQTLs—using the covariance matrices from (i).
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The model from (ii) was then used to perform inferences and to test for eQTLs in each tissue.

Our new methods are relevant to (i), and so we focus on stage (i) here. For (i), Urbut et al.

[2019] used the ED algorithm without a penalty. Recognizing that the results are sensitive to

initialization, they described a detailed initialization procedure.1 We coded an initialization

procedure similar to this, which we refer to as the “specialized initialization”. We note that

the specialized initialization adds substantially to both the complexity and computation time

of the overall fitting procedure. Our goal was to assess the benefits of different EBMNM

analysis pipelines which consisted of combinations of: TED vs. ED updates; specialized

initialization vs. a simple random initialization; and penalty vs. no penalty (maximum-

likelihood). All these combinations resulted in 8 different analyses of multi-tissue cis-eQTL

data.

We analyzed z-scores from tests for association between gene expression in dozen human

tissues and genotypes at thousands of genetic variants. The z-scores came from running the

“Matrix eQTL” software [Shabalin, 2012] on genotype and gene expression data in release

8 of the Genotype-Tissue Expression (GTEx) Project [GTEx Consortium, 2020]. Following

Urbut et al. [2019], we selected the genetic variants with the largest z-score (in magnitude)

across tissues for each gene. After data filtering steps, we ended up with a data set of z-scores

for n = 15,636 genes and R = 49 tissues. We fit the EBMNM model to these data, with

all the Vj set to a common correlation matrix; that is, Vj = C, where C is a correlation

matrix of non-genetic effects on expression. This correlation matrix C was estimated from

the association test z-scores following the approach described in Urbut et al. [2019]. In all

runs, we set K = 40 to match the number of covariance matrices produced by our specialized

initialization. And, in all cases, we initialized the mixture weights to πk = 1/40 and the

scaling factors (when needed) to sk = 1.

1. An updated version of the initialization procedure of Urbut et al. [2019] is described in the “flash_mash”
vignette included in the mashr R package. See also https://stephenslab.github.io/mashr/articles/f
lash_mash.html.
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Figure 2.8: Plots showing improvement in model fit over time for the GTEx data, using
different initialization schemes, different prior covariance matrix updates, and penalty vs.
no penalty (maximum-likelihood). Log-likelihood differences and penalized log-likelihood
differences are with respect to the (penalized) log-likelihood near the initial estimate. All
models were fit with K = 40 mixture components. In B, the inverse wishart (IW) penalty
was used with penalty parameter λ = R. In all cases, the model fitting was halted when the
difference in the log-likelihood between two successive updates was less than 0.01, or when
5,000 updates were performed, whichever came first.

Figure 2.8 shows the improvement of the model fits over time in the 8 different analyses.

In the analyses without a penalty (A), the TED updates with a specialized initialization

produced the best fit, while the ED and TED updates with random initialization were

somewhat worse (e.g., TED with random initialization produced a fit that was 2,497.78 log-

likelihood units worse, or 0.16 log-likelihood units per gene). Strikingly, the ED updates

with specialized initialization resulted in a much worse fit. We attribute this to the fact that

the specialized initialization includes many rank-1 matrices, and the “subspace preserving”

property of the ED updates means that these matrices are fixed at their initialization (they

changed only by a scaling factor), which substantially limits their ability to adapt to the

data. In the penalized case, consistent with our simulation results, there was less difference

between ED vs. TED. In both cases, the specialized initialization improved the fit relative

to random initialization (e.g., TED increased the penalized log-likelihood by 3,176, or about
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0.2 per gene). Note that adding a penalty function makes the subspace preserving property

of the ED updates irrelevant by forcing the matrices to be full rank.

To compare the quality of the fits obtained by each method, we computed log-likelihoods

on held-out (“test set”) data, using a 5-fold cross-validation (CV) design. Following the usual

CV setup, in each CV fold 80% of the genes were in the training set, and the remaining 20%

were in the test set. Then we fit an EBMNM model to the training set following each of

the 8 approaches described above, and measured the quality of the fit by computing the log-

likelihood in the test set. We also recorded the number of iterations. Within a given fold,

the number of components K was the same across all the analyses, and was set depending

on the number of covariance matrices produced by the specialized initialization. (K was at

least 32 and at most 39.)

Consistent with the simulations, the inclusion of a penalty consistently improved the test

set log-likelihood (Table 2.2). With a penalty, the specialized initialization also improved the

test set log-likelihood compared with a random initialization. Of the 8 approaches tried, the

one used by Urbut et al. [2019]—ED with no penalty and specialized initialization—resulted

in the worst test-set likelihood.
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Figure 2.9: Comparison of the prior mixture weights π from the previous pipeline vs. the new
pipeline. The histogram shows the distributions of the K40 prior mixture weights resulting
from both pipelines.
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mean relative average number
initialization algorithm penalty log-likelihood of iterations

specialized ED none 0.00 1,101
specialized ED IW 1.21 1,083
specialized TED none 0.88 1,054
specialized TED IW 1.19 412
random ED none 0.25 5,000
random ED IW 0.86 1,377
random TED none 0.20 450
random TED IW 0.94 584

Table 2.2: Cross-validation results on the GTEx data. The “mean relative log-likelihood”
column gives the increase in the test-set log-likelihood over the worst log-likelihood among
the 8 approaches compared, divided by total number of genes in each test set. The “average
number of iterations” column gives the number of iterations performed until the stopping
criterion is met (log-likelihood between two successive updates less than 0.01, up to a maxi-
mum of 5,000 iterations), averaged over the 5 CV folds.
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Figure 2.11: Top effect-sharing patterns in the GTEx data generated by the new analysis
pipeline. See the caption to Fig. 2.10 for more details.

Although the analyses with a specialized initialization resulted in better fits than the
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analyses with a random initialization, the specialized initialization also had substantial com-

putational overhead; running the initialization procedures on these data took more than 1

hour (by comparison, running a single iteration of the EBMNM algorithm typically took

about 1 second). Therefore, on balance, one might prefer to dispense with the specialized

initialization. Based on these results and considerations, we subsequently examined in more

detail the analysis with ED, no penalty and specialized initialization—which was the ap-

proach used in Urbut et al. [2019]—and the analysis with TED, IW penalty and random

initialization. For brevity, we refer to these analyses as the “previous pipeline” and “new

pipeline”, respectively.

A notable outcome of the new pipeline is that it produced a prior with weights that

were more evenly distributed across the mixture components (Figure 2.9). For example, the

new pipeline produced 22 covariances with weights greater than 1%, whereas the previous

pipeline produced only 10 covariances with weights more than 1%. Also, the top 16 covari-

ances accounted for 85% of the total weight in the new pipeline, whereas only 6 covariances

were needed to equal 85% total weight in the previous pipeline. Inspecting the individual

covariances generated from the two analysis pipelines, there are many strong similarities

in the estimated sharing patterns (Figures 2.10 and 2.11). But the new analysis pipeline

learned a greater variety of tissue-specific patterns (e.g., whole blood, testis, thyroid) and

tissue-sharing patterns, many of which appear to reflect underlying tissue biology. For exam-

ple, sharing pattern 6 (see Figure 2.11) captures sharing of brain-specific effects (including

the pituitary gland, which is found at the base of the brain near the hypothalamus). Sharing

pattern 8 may reflect the fact that skin and the mucosa layer of the esophagus wall both

contain squamous epithelial cells. Additionally, we looked at more closely at the 8 genes

with very strong posterior weights (>98%) on component 6, the component capturing eQTL

sharing among brain tissues: HOMER1, JPT1, SRSF2, ABCA1, GPATCH8, SYNGAP1,

SPI1 and LGMN. Several of these have been linked to neurological and neuropsychiatric
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conditions, including major depression, schizophrenia, attention dementia and Alzheimer’s

disease. For example, SYNGAP1 is linked to neuronal functions and psychiatric diseases

based on results from the GWAS Catalog [Sollis et al., 2022] and from functional studies

[Jeyabalan and Clement, 2016, Llamosas et al., 2020]. In summary, the improvements to the

EBMNM analysis pipeline should result in the discovery of a greater variety of cross-tissue

genetic effects on gene expression.

2.7 Discussion

The growing interest in deciphering shared underlying biological mechanisms has led to a

surge in multivariate analyses in genomics; among the many recent examples are multi-trait

analyses [Wu et al., 2020, Luo et al., 2020] and multi-ancestry analyses to improve polygenic

risk scores [Zhang et al., 2023]. The EBMNM approach described here and in Urbut et al.

[2019] provide a versatile and robust multivariate approach to multivariate analysis. We

have implemented and compared several algorithms for this problem. These algorithms not

only enhance accuracy but also provide a level of flexibility not achieved by other methods.

One of our important findings is that using low-rank covariance matrices in this setting, as

was done in Urbut et al. [2019], is not recommended. In particular, while low-rank matrices

may be relatively easy to interpret, they lead to poorly calibrated lfsr values (e.g., Figure

2.5). For intuition, consider fitting a EBMNM model with K = 1 and a rank-1 covariance

matrix, U1 = uuT . (We credit Dongyue Xie for this example.) Under this model, the mean

is θj = uaj for some aj , and therefore, given a u, the signs of all the elements of θj are

fully determined by aj . As a result, all elements of θj will have the same lfsr, and so this

model cannot capture situations where one is confident in the sign of some elements of θj

but not others. This can cause problems even if the model is correct, that is, when the

true covariances are rank-1, as in Figure 2.5. There are some possible ways to address these

issues, say, by imposing sparsity on estimates of u, and this could be an area for future work.
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Even when the pitfalls of low-rank matrices are avoided, it is still the case that EB

methods tend to understate uncertainty compared to “fully Bayesian” methods (e.g., Morris

1983, Wang and Titterington 2005). As a result, one should expect that the estimated lfsr

values may be anti-conservative; that is, the lfsr values are smaller than they should be.

Indeed, we saw this anti-conservative behavior across many of our simulations and methods

(Supplementary Figures A.2 and A.3). For this reason estimated lfsr rates should be treated

with caution, and it would be prudent to use more stringent significance thresholds than are

actually desired (e.g., an lfsr threshold of 0.01 rather than 0.05). In the special case where

V = I, it should be possible to improve calibration of significance tests by using ideas from

Lei and Fithian [2018]. Improving calibration in the general case of dependent multivariate

tests seems to be an important area for future research.
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CHAPTER 3

COXPH-SUSIE: BAYESIAN VARIABLE SELECTION METHOD

FOR SURVIVAL DATA

Abstract

Genome-wide survival analysis of time-to-event (TTE) phenotypes, such as disease onset

and progression, have led to the discovery of novel genetic loci that are missed by traditional

case-control approaches [Bi et al., 2020]. However, fine-mapping to identify causal variants

remains challenging due to high linkage disequilibrium (LD) among genetic variants. To

address this, we introduce CoxPH-SuSiE, a novel Bayesian variable selection in regression

method that extends the "Sum of Single Effects" (SuSiE) regression [Wang et al., 2020] to

the Cox proportional hazards (CoxPH) model.

CoxPH-SuSiE retains the computational efficiency of SuSiE and provides credible sets

(CSs) of causal variants. We benchmarked CoxPH-SuSiE against other Bayesian variable

selection methods for survival models using simulated data and demonstrated its superior

performance in identifying causal variants under complex LD structures. We further applied

CoxPH-SuSiE to analyze self-reports of asthma in the UK Biobank. Our results demonstrate

that CoxPH-SuSiE offers a robust and efficient solution for fine-mapping genetic variants in

TTE phenotypes, providing valuable insights into the genetics of disease progression.

3.1 Introduction

With the increasing availability of biobanks and electronic health records, analyzing time-to-

event (TTE) phenotypes—such as disease age of onset, progression and lifespan—has become

more common in genetics. TTE data provides critical insights into the genetics of disease

development and progression, thereby enhancing our understanding of disease etiology and
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guiding intervention planning. Research has shown that modeling TTE phenotypes using

survival models can be more powerful than modeling binary disease occurrence status using

logistic models in cohort studies, particularly for common events [Green and Symons, 1983,

Callas et al., 1998, Staley et al., 2017]. Additionally, genome-wide survival association studies

(GWAS) have identified several significant loci in Essential hypertension, Osteoarthrosis,

Asthma, Cataract, Coronary atherosclerosis and Type 2 diabetes that are not significant

based on case-control status [Bi et al., 2020].

Despite the detection of new loci in GWAS of TTE phenotypes, narrowing down to

potential causal variants is crucial to understand the genetic causes of diseases. This step

is usually achieved through fine-mapping. Fine-mapping is a challenging problem due to

the existence of strong and complex correlation patterns (“linkage disequilibrium”, or LD)

among nearby genetic variants. Studies often include many pairs of genetic variants with

sample correlations larger than 0.99, or even equaling 1. The most successful fine-mapping

approaches treat it as a variable selection problem based on regression models, where genetic

variants are the candidate predictors [Sillanpaa and Bhattacharjee, 2005].

Bayesian variable selection in regression (BVSR) is an appealing approach to fine-mapping

as it can provide uncertainty quantification of which variables to select. And several BVSR

methods have been developed for survival models to handle high-dimensional genomics data

with numerous covariates, often in the thousands. Newcombe et al. [2017] presented a sparse

Bayesian Weibull regression method using a normal prior for non-zero effect variables and

implemented a reversible jump MCMC algorithm. Other methods focus on the Cox pro-

portional hazards (CoxPH) regression model [Cox, 1972], the most widely used survival

model. Nikooienejad et al. [2020] proposed a Bayesian method for variable selection within a

CoxPH regression model, utilizing a nonlocal prior for non-zero coefficients and implemented

a stochastic search algorithm for computation. Later, Komodromos et al. [2022] introduced a

sparse variational Bayes approach based on CoxPH model with a Laplace prior for non-zero
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effect variables. They used mean-field approximation and implemented a coordinate-ascent

algorithm to solve the model. However, these authors only applied their methods to datasets

with moderate covariate correlations (around 0.6 to 0.8), leaving it unclear how those meth-

ods would perform in the fine-mapping setting with many pairs of correlations nearly 1.

A widely-used fine-mapping method for quantitative traits is the “Sum of Single Effects"

(SuSiE) regression by Wang et al. [2020]. SuSiE presented a new formulation of BVSR,

resulting in a simple and fast model fitting procedure. It employs a normal prior for non-zero

coefficients and utilizes a coordinate ascent algorithm for optimization. Additionally, it offers

a straightforward way to calculate “Credible Sets” (CSs) of putative causal variants, where

each CS is a subset of variants that includes at least one causal variant with a specified

probability. Given SuSiE’s success in fine-mapping, we extend its framework to CoxPH

model, which we refer to as CoxPH-SuSiE. CoxPH-SuSiE uses the same parameterization

for covariates and a similar model fitting procedure as SuSiE. Therefore, CoxPH-SuSiE

inherits the advantages of SuSiE.

In this chapter, we describe how CoxPH-SuSiE works in detail. We also compare CoxPH-

SuSiE with other existing survival BVSR methods in the context of fine-mapping. Section

3.2.3 and 3.3 provide brief background for SuSiE and survival analysis. Section 3.4-3.6 de-

scribe how CoxPH-SuSiE works in details. Section 3.7 compares the performance of CoxPH-

SuSiE with other existing BVSR methods for survival data. Section 3.8 applies CoxPH-

SuSiE to real data, the self-reports of asthma in the UK Biobank. Section 3.9 discusses the

advantages and limitations of CoxPH-SuSiE, and possible future directions.
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3.2 Background: Sum of Single Effect Regression (SuSiE)

3.2.1 Bayesian simple linear regression

We start from the prerequisite, Bayesian simple linear regression model:

y = xb+ e, (3.1)

e ∼ Nn(0, σ
2In), (3.2)

b ∼ N1(0, σ
2
0). (3.3)

Here, x, y and e are n-vectors containing values of the explanatory variable, the response

and the error. b is a scalar regression coefficient. σ2 is the variance of the error term and

σ20 is the prior variance of b. Given σ2 and σ20, the posterior computations for this model

are fairly simple and can be written in the form of the usual least-squares estimate of b,

b̂ = (xTx)−1xTy, its variance s2 := (xTx)−1σ2, and the corresponding z score, z := b̂/s.

The posterior distribution for b is:

b|x,y, σ2, σ20 ∼ N1(µ1, σ
2
1), (3.4)

where

σ21(x;σ
2, σ20) :=

1

1/s2 + 1/σ20
(3.5)

µ1(x,y, σ
2, σ20) := (σ21/s

2)b̂. (3.6)

In the Bayesian paradigm, we use Bayes Factor (BF) to measure how strong the evidence
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is. The BF for comparing this model with the null model (b = 0):

BF(x,y|σ20, σ
2) =

p(y|x, σ2, σ20)
p(y|x, σ2, b = 0)

=

∫
p(y|x, σ20, σ

2, b)p(b)db

p(y|σ2, b = 0)
(3.7)

=

√
s2

σ20 + s2
exp

(z2
2
×

σ20
σ20 + s2

)
. (3.8)

Note that under Bayesian simple linear regression, the BF expression is an exact one.

3.2.2 Single effect regression (SER)

The “single-effect regression" (SER) model is the building block of SuSiE, which is defined

as a multiple regression model with exactly one non-zero effect variable among all. The SER

model is also trivial to fit and we will see later that fitting the SER model helps solving the

more complicated SuSiE model. The SER model is as follows:

y = Xb+ e, (3.9)

e ∼ Nn(0, σ
2In), (3.10)

b = bγ, (3.11)

γ ∼ Mult(1,π), (3.12)

b ∼ N1(0, σ
2
0). (3.13)

Again, y is the n-vector of response data. X = (x1, . . . ,xp) is an n × p matrix storing

n observations of p explanatory variables and b is the p-vector of regression coefficients. e

is the independent error terms and γ ∈ {0, 1}p is a p-vector of indicator variables. The

scalar b represents the “single effect". Mult(m,π) denotes the multinomial distribution on

class counts that is obtained when m samples are drawn with class probabilities π. σ2,

σ20 and π = (π1, . . . , πp) are hyperparameters, representing the residual variance, the prior

variance of the non-zero effect and prior inclusion probabilities, where πj indicates the prior
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probability that variable j has non-zero effect.

The inference goal here is to find the posterior distribution of b, more specifically, b|γ

and γ, which were derived in Wang et al. [2020]. Given σ20 and σ2, the posterior distribution

of b|γ and γ under SER model (3.9)-(3.13) are:

γ|X,y, σ2, σ20 ∼ Mult(1,α), (3.14)

b|X,y, σ2, σ20, γj = 1 ∼ N1(µ1j , σ
2
1j), (3.15)

where α = (α1, · · · , αp) is the vector of posterior inclusion probabilities (PIPs), and µ1j , σ
2
1j

are the posterior mean and variance of simple linear regression in (3.5)-(3.6) given γj = 1:

αj = P (γj = 1|X,y, σ20, σ
2) =

πjBFj∑p
j′=1

πj′BF′j
(3.16)

µ1j = µ1(xj ,y;σ
2, σ20) (3.17)

σ21j = σ1(xj ;σ
2, σ20). (3.18)

Wang et al. [2020] also defined a function that returns the posterior distribution of b under

the SER model:

SER(X,y;σ2, σ20) := (α,µ1,σ
2
1), (3.19)

where µ1 := (µ11, · · · , µ1p) and σ2
1 := (σ211, · · · , σ

2
1p).

3.2.3 Sum of single effect regression

The SER model, while straightforward to fit, has quite narrow applicability because of the

assumption that there is exactly one nonzero effect. The sum of single effect regression

(SuSiE) model can be viewed as a natural extension to SER model, which expresses the
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overall effect vector b as a summation of multiple single effect vectors, b =
∑L

l=1 bl. The

SuSiE model is defined as follows:

y = Xb+ e, (3.20)

e ∼ Nn(0, σ
2In), (3.21)

b =
L∑
l=1

bl (3.22)

bl = blγl, (3.23)

γl ∼ Mult(1,π), (3.24)

bl ∼ N1(0, σ
2
0l). (3.25)

Here, L is the number of single effect vectors. SuSiE allows the prior variance σ2
0l =

(σ201, · · · , σ
2
0L) to be different for each single effect vector. In the special case of L = 1,

the SuSiE model simplifies to the SER model.

Wang et al. [2020] introduced the Iterative Bayesian Stepwise Selection (IBSS) algorithm

to fit the SuSiE model; see Algorithm 2. The intuition is that, given bl′ ̸=l, solving the lth sub-

problem corresponds to fitting a SER model. Thus, the IBSS algorithm iteratively updates

the posterior distribution for each bl under the SER model, given the current estimates of

the other bl′ , l′ ̸= l. The hyper-parameters σ2 and σ2
0 are estimated using an empirical Bayes

approach.
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Algorithm 2: Iterative Bayesian stepwise selection (IBSS)
Data: X,y

Require: Number of effects, L; hyperparameters σ2,σ2
0

. Require: A function SER(X,y, σ2, σ20)→ (α,µ1,σ1) that computes the

posterior distribution for bl under the SER model;

Initialization: posterior means b̄l = 0, for l = 1, . . . ,L;

repeat

for l ∈ 1, . . . ,L do
θl ←X

∑
l′ ̸=l b̄l′

(αl,µ1l,σ1l)← SER(X,y − θl;σ
2
0l, σ

2)

b̄l ← αl ◦ µ1l “◦" denotes element-wise multiplication.

end

until convergence criterion satisfied ;

Return: α1,µ11,σ11, . . . ,αL,µ1L,σ1L

Wang et al. [2020] showed that IBSS algorithm is a coordinate ascent algorithm for opti-

mizing a variational approximation (VA) to the posterior distribution for b1, · · · , bL under

the SuSiE model. It finds an approximation q(b1, · · · , bL) to the true posterior distribution

ppost = p(b1, · · · , bL|X,y,σ2
0, σ

2) by minimizing the Kullback-Leibler (KL) divergence from

q to ppost. The approximation q is designed to factor out as L independent components:

q(b1, · · · , bL) =
L∏
l=1

ql(bl). (3.26)

Therefore, the L single effect vectors are independent a posteriori. Notably, SuSiE does not

require each ql factorizes over the p elements of bl, so that ql can capture strong dependencies

among the elements of bl under the assumption that only one element of bl is non-zero.

SuSiE provides convenient novel summaries of uncertainty in variable selection through

Credible Sets, where a level-ρ Credible Set (CS) of variables is defined as follows:
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Definition 1. A level-ρ Credible Set (CS) is a subset of variables that has probability ≥ ρ

of containing at least one effect variable.

Given the posterior inclusion probabilities α, it’s straightforward to construct a CS. First,

sort the variants in descending order based on αj . Then, add variants to the CS until their

cumulative probability exceeds ρ. In SuSiE, the L single effect vectors will yield L CSs.

SuSiE further prunes the CSs based on “purity", which is defined as the smallest absolute

correlation among all pairs of variables within the CS. The rationale is that CSs containing

many uncorrelated variables lack inferential value and are therefore disregarded in practice.

3.3 Background: Survival analysis

Survival analysis models time-to-event data, where the event of interest may be death, disease

recurrence, or failure. In survival analysis, people are usually interested in estimating the

probability of occurrence of the event over time, or understanding the relationship between

predictors or risk factors and the time-to-event outcome.

An example setting where such data arises is in prospective cohort studies, where a group

of individuals are followed over a certain period of time to determine whether they develop

a specific disease. A unique challenge of survival data is that the time-to-event may not

be observed for every individual. This phenomenon is called "censoring" and can occur

for several reasons: some individuals may not develop the disease by the end of the study,

they may be lost to follow-up, or they may drop out of the study. Despite the absence of

event times for some individuals, censoring still contains partial information. Specifically,

it indicates that these individuals had not developed the outcome by the time of censoring.

Therefore, survival analysis incorporates censoring information into the modeling process

Clark et al. [2003].

Conventionally, people use Ti to denote the time to event for individual i, and Ci for

corresponding censoring time. We either observe the event time or the censoring time,
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whichever occurs first, i.e. we observe Yi = min(Ti, Ci). We use an indicator variable δi to

distinguish which occurs first, δi = 1(Ti ≤ Ci). To characterize the distribution of survival

time T , people make use of the following four functions, which are inter-related:

1. Probability density function:

f(t) = lim
∆→0

1

∆
P (t ≤ T < t+∆) (3.27)

= λ(t)S(t) = λ(t) exp

{
−
∫ t

0
λ(s)ds

}
(3.28)

2. Survival function:

S(t) = P (T > t) = 1− P (T ≤ t) (3.29)

= 1− F (t) = 1−
∫ t

0
f(s)ds, (3.30)

where F (t) is the cumulative distribution function (CDF).

3. Hazard function: the instantaneous rate at time t, given that the event has not occurred

prior to time t.

λ(t) = lim
∆→0

1

∆
P (t ≤ T < t+∆|T ≥ t) (3.31)

=
f(t)

S(t)
= − ∂

∂t
logS(t) (3.32)

4. Cumulative hazard function:

Λ(t) =

∫ t

0
λ(s)ds = − logS(t). (3.33)
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3.3.1 Cox proportional hazards regression

In survival analysis, the relationship between time to event and covariates is usually modeled

through the hazard function:

λ(t|xi) = lim
∆→0

1

∆
P (t ≤ T < t+∆|T ≥ t,xi), (3.34)

where xi is the vector of covariates thought to influence the survival for individual i. The

survival regression models can be viewed as consisting of two components: the baseline

hazard function, which describes how the risk of event changes over time at baseline levels of

covariates; and the effect parameters, which characterize how the hazard varies in response

to explanatory covariates, for instance, race, sex and certain treatments.

Cox [1972] proposed a semi-parametric proportional hazards model, commonly known as

the Cox Proportional Hazards (CoxPH) model, which allows for an arbitrary baseline hazard

function. The proportional hazards (PH) assumption states that covariates are multiplica-

tively related to the hazard. Specifically, let xi be a vector of covariate values for individual

i, the hazard function for CoxPH model is:

λ(t|xi) = λ0(t) exp{bTxi}, (3.35)

where λ0(t) is the baseline hazard. b is the vector of covariate coefficients, which represents

log hazard ratios, i.e. exp{bj} can be interpreted as comparing the hazard of two individuals

whose covariate values are the same except xij = l + 1 and xi′j = l,

λ(t|xi)

λ(t|xi′)
= exp{bj}. (3.36)
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Also note that the CoxPH model (3.44) does not have an intercept term, as the intercept does

not depend on individuals’ covariates, therefore, it gets absorbed into the baseline hazard

function λ0(t). This formulation implies that the proportionality remains constant over time,

while the baseline hazard λ0(t) may change. λ0(t) is not parameterized, meaning it does not

require a specific distributional assumption for survival time. This makes CoxPH model a

very flexible and widely used tool in survival analysis.

Partial likelihood

The primary interest of CoxPH model is to estimate and make inference on the covariate

coefficients b. The standard maximum likelihood approach won’t work since the distribu-

tion of survival time T is arbitrary in CoxPH model. Cox [1972] proposed to condition on

the occurrence of events and the corresponding event times. This is because intervals with-

out failures provide no information about b, as the baseline hazard component λ0(t) could

potentially be zero during these intervals.

Suppose the observed data is {(yi, δi,xi) : i = 1, · · · , n}, containing K events. Let

t(1) < t(2) < · · · < t(K) denote the ordered event times across the n observations and we

assume there is no tie in event times for now. Let Rk be the risk set for the kth event, which

contains all individuals who were at risk to experience the event, that is, individuals with

yi ≥ t(k). Let x(k) denote the covariate vector for the individual who experienced the event

at t(k). For failure time t(k), conditionally on the risk set Rk, the probability that the failure

is on the individual as observed is

λ0(t(k)) exp{bTx(k)}∑
i∈Rk

λ0(t(k)) exp{bTxi}
=

exp{bTx(k)}∑
i∈Rk

exp{bTxi}
. (3.37)
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The partial likelihood aggregates the conditional probabilities across K risk sets:

Lp(b) =
K∏
k=1

exp{bTx(k)}∑
i∈Rk

exp{bTxi}
, (3.38)

and the log-partial likelihood is:

lp(b) =
K∑
k=1

bTx(k) − log

( ∑
i∈Rk

exp{bTxi}
) . (3.39)

The estimation and inference on b is based on Lp(b) by maximizing partial likelihood. Stan-

dard errors are obtained via the partial likelihood observed information matrix:

I = − ∂2

∂b∂bT
lp(b). (3.40)

A Bayesian justification of Cox’s partial likelihood

Under the fully Bayesian semiparametric paradigm, priors are specified on both cumulative

baseline hazard Λ0(t) and regression parameters b, denoting as p(Λ0) and p(b). These two

priors are generally assumed independent. The marginal likelihood function for b is:

L(b) =

∫
L(b,Λ0|D)p(Λ0)dΛ0, (3.41)

where D = {(yi, δi,xi) : i = 1, · · · , n} denotes the observed data and L(b,Λ0|D) denotes

the full likelihood under (3.34). When a gamma process prior is specified for Λ0(t), such

that

Λ0(t) ∼ G(cΛ∗(t), c), (3.42)
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where c and Λ∗ are the hyperparameters of the gamma process, Kalbfleisch [1978] first

showed that as c → 0, and to a first-order approximation, the marginal likelihood function

for b is proportional to Lp(b). Then, Bayesian inference about b in this case is carried out

based on the approximate posterior density pPL(b|D),

pPL(b|D) ∝ Lp(b|D)× p(b). (3.43)

3.4 Bayesian CoxPH model with one covariate

In this section, we describe how to fit a Bayesian CoxPH model with a single covariate, which

is the foundation for CoxPH single effect regression (SER) and CoxPH-SuSiE. We consider

the following single covariate model with data from n individuals:

λi(t) = λ0(t) exp{bxi}, i = 1, · · · , n (3.44)

b ∼ N(0, σ20), (3.45)

where λ0(t) is the baseline hazard at time t and b is the coefficient for the single covariate

x. This model assumes the prior distribution for b is a centered normal distribution with

variance σ20.

From Section 3.2.3, we can see the key elements to fit SER are: the posterior distribution

of b and the Bayes factor. Of course there are other ways of doing inference for model

(3.44)-(3.45), we choose a way which is most similar to SuSiE where we focus on getting the

posterior distribution of b and the BF. Since both of these have no closed forms, we apply

a quadratic approximation to the log-partial likelihood lp(b) at maximum partial likelihood
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estimate (MPLE), denoting as b̂. By Taylor expansion,

lp(b) ≈ lp(b̂) + l′p(b̂)(b− b̂) +
l′′p(b̂)

2
(b− b̂)2 (3.46)

= lp(b̂) +
l′′p(b̂)

2
(b− b̂)2. (3.47)

Then exponentiating both left-hand side and right-hand side,

Lp(b) ≈ L̂p(b) = exp{lp(b̂)} exp{
l′′p(b̂)

2
(b− b̂)2}, (3.48)

where L̂p() denotes the approximate partial likelihood function and the second term on the

right-hand side is a Gaussian kernel with variance equal to −1/l′′p(b̂). In CoxPH model,

−1/l′′p(b̂) is the standard error for MPLE, denoted as s2.

3.4.1 Posterior distribution of b

We apply the approximation for Lp() in (3.48) and obtain an approximate posterior distri-

bution of b, which is Gaussian.

b|x,y, δ, σ20
approx.∼ N(µ1, σ

2
1), (3.49)

where

σ21(x,y, δ;σ
2
0) =

1

1/s2 + 1/σ20
(3.50)

µ1(x,y, δ;σ
2
0) = (σ21/s

2)b̂. (3.51)

b̂ is MPLE and s2 is the corresponding standard error, which equals −1/l′′p(b̂).
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3.4.2 Bayes factor computation

The Bayes factor (BF) for comparing model (3.44)-(3.45) versus the null model (b = 0) is:

BF =
P (D|H1)

P (D|H0)
=

∫ ∫
p(y, δ|x, b,Λ0)p(b)p(Λ0)dbdΛ0∫
p(y, δ|x, b = 0,Λ0)p(Λ0)dΛ0

=

∫ { ∫
p(y, δ|x, b,Λ0)p(Λ0)dΛ0

}
p(b)db∫

p(y, δ|x, b = 0,Λ0)p(Λ0)dΛ0
.

(3.52)

Using results from Kalbfleisch 1978, Sinha et al. 2003, described in Section 3.3.1, when use

a very diffuse gamma process prior on Λ0(t), the BF can be approximated as a function of

the partial likelihood which does not depend on Λ0:

BF ∼=
∫
Lp(y, δ|x, b)p(b)db
Lp(y, δ|x, b = 0)

. (3.53)

The BF in (3.53) has no closed-form expression so we used approximate BFs.

Approximate Bayes factors

We considered three approximate BFs for this problem; these approximations were developed

in consultation with Karl Tayeb. The first approximate BF is proposed by Wakefield [2009],

BFW :=

√
s2

σ20 + s2
exp

(z2
2
×

σ20
σ20 + s2

)
, (3.54)

where z and s denote the z-score and standard error under CoxPH regression model of (3.44).

Then, we introduce another BF based on the quadratic approximation in (3.48), which

we call Laplace BF:

BFL =

∫
L̂p(b)p(b)db

Lp(b = 0)
=

√
s2

σ20 + s2
exp

{z2
2

σ20
σ20 + s2

}
exp{−b̂2/2s2}

Lp(b̂)

Lp(0)
, (3.55)

where z and s are the same as in (3.54) and b̂ denotes the MPLE under model (3.44). The
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detailed calculation is available in Appendix B.1.

Gauss-Hermite quadrature

Here we introduce a numerical integration method, Gauss-Hermite quadrature and apply

it to BF computation. The equation (9) in Naylor and Smith [1982] gives the following

approximation formula:

∫ ∞
−∞

f(t)ϕ(t;µ, σ2)dt ≈
n∑

i=1

wi/
√
πf(ti), (3.56)

where ϕ(·;µ, σ2) denotes the density of a Gaussian distribution with mean µ and variance

σ2 ; ti = µ +
√
2σxi; xi are the zeros of the nth order Hermite polynomial and wi are

corresponding weights; see Davis and Rabinowitz [2007].

This formula can be used to approximate an integral I =
∫∞
−∞ g(t)dt by writing it as

∫ ∞
−∞

g(t)dt =

∫ ∞
−∞

h(t)ϕ(t;µ, σ2)dt, (3.57)

where h(t) := g(t)/ϕ(t;µ, σ2). Here µ, σ2 are arbitrary, and so should be chosen to make the

approximation as accurate as possible. To achieve this, Liu and Pierce [1994] suggests that

µ, σ2 should be chosen so that g(x) ≈ cϕ(x;µ, σ2) for some constant c.

The numerator of the BF is an integral I with g(b) = Lp(b)ϕ(b; 0, σ
2
0) (see equation

(3.53)), which is proportional to the posterior distribution of b. We therefore select µ and

σ2 to be the approximate posterior mean and variance (3.50)-(3.51), and apply the approx-

imation formula (3.56) with n = 32. Increasing the value of n can increase the accuracy of

the approximation to the BF.
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3.5 CoxPH single effect regression

In previous section, we’ve introduced Bayesian CoxPH model with single covariate. In this

section, we describe CoxPH single effect regression (SER), which is the building block of

CoxPH-SuSiE. Similar to SER model in (3.9)-(3.13), CoxPH-SER also assumes exactly one of

the p explanatory variables has a non-zero coefficient. Specifically, we consider the following

model:

λi(t) = λ0(t) exp{bTxi + oi}, i = 1, · · · , n (3.58)

b = bγ (3.59)

γ ∼ Mult(1,π) (3.60)

b ∼ N(0, σ20), (3.61)

where λi(t) is the hazard for individual i and λ0(t) is the baseline hazard. xi stores the values

of p explanatory variables of individual i. b is the effect size vector and b is the scalar value

for the ‘single effect’. γ ∈ {0, 1}p is the same as in the SER model of (3.9)-(3.13), denoting

a p-vector of indicator variables with exactly one non-zero entry. The prior distributions of

γ and b are also the same as the SER model (3.9)-(3.13), where π = (π1, · · · , πp) represents

prior inclusion probabilities. Additionally, we introduce an offset oi for each individual i,

which is a fixed constant value added to the linear predictors. In the CoxPH-SER model,

the offset oi is set to 0 for i = 1, · · · , n (therefore, ignored in the derivation). The role of the

offset in solving CoxPH-SuSiE will be explained later in Section 3.6.
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3.5.1 Posteriors under CoxPH-SER model

The posterior distribution of γ is:

γ|X,y, δ ∼ Mult(1,α) (3.62)

αj = P (γj = 1|X,y, δ) =
πjBFj∑
j′ πj′BFj′

, (3.63)

where X is the n× p matrix of values for p covariates across n individuals, and BFj is the

Bayes factor comparing the model with jth covariate only versus the null model. The poste-

rior distribution of b doesn’t have a closed-form, but we can use the normal approximation

in Section 3.4.1. Therefore,

b|X,y, δ,γj = 1, σ20
approx.∼ N(µ1j , σ

2
1j), (3.64)

where µ1j and σ21j are the approximate posterior mean and variance from model (3.44)

-(3.45) with xj being the single covariate.

Now that we have all the pieces required for solving CoxPH-SER model, we define a

CoxPH-SER module for later convenience:

CoxPH-SER(X,y, δ,o;σ20) := (α,µ1,σ
2
1), (3.65)

where the input data is (X,y, δ,o) and the output is (α,µ1,σ
2
1).

3.5.2 Prior variance estimation

In earlier sections, σ20 is treated as a fixed parameter. In fact, it can be estimated using max-

imum likelihood, which is essentially an empirical Bayes approach. The marginal likelihood
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for σ20 under CoxPH-SER is:

L(σ20) := p(y|X, σ20). (3.66)

We use an expectation-maximization (EM) algorithm to solve the problem iteratively. The

key idea is to augment the data by (γ, b). The E-step computes the expected complete data

log-likelihood, which uses the posterior distribution of γ and the approximate posterior of

b|γ ( Section 3.5.1) in the calculation. The M-step maximizes the expected complete data

log-likelihood with respect to σ20, and results in the following update:

σ20 ←
p∑

j=1

αj(µ
2
1j + σ21j), (3.67)

where µ1j and σ21j denote the approximate posterior mean and variance of b|γj = 1. The

full derivation for the EM algorithm is available in Appendix B.2.

3.6 CoxPH SuSiE

In this section, we introduce the CoxPH-SuSiE model and the algorithm for solving it. The

CoxPH-SuSiE model is as follows:

λi(t) = λ0(t) exp{xT
i b}, i = 1, · · · , n (3.68)

b =
L∑
l=1

bl (3.69)

bl = γlbl (3.70)

γl ∼ Mult(1,π) (3.71)

bl ∼ N1(0, σ
2
0l), (3.72)

66



where λi(t) denotes the hazard for individual i and λ0(t) denotes the baseline hazard. b is

the overall effect vector, which is the sum of L single effect vectors, denoted as bl for the lth

one. The priors for γl and bl, l = 1, · · · , L are the same as SuSiE model.

To fit CoxPH-SuSiE, we implemented an algorithm similar to the IBSS algorithm used

in SuSiE, which we refer to as Generalized Iterative Bayesian Stepwise Selection (GIBSS).

Details can be found in Algorithm 3. For each l, the offset ol is first computed given b̄l′ ̸=l.

Recall that in SuSiE, when we solve the lth sub-problem, we keep l′ ̸= l fixed and subtract

X
∑

l′ ̸=l b̄l′ from y (see Algorithm 2). This subtraction is no longer possible in CoxPH

model because the hazard is not a linear combination of the predictors. Therefore, instead

of subtraction, we use offset ol := X
∑

l′ ̸=l b̄l′ for the fixed part. Then we apply CoxPH-SER

function to compute the posterior inclusion probabilities αl and the approximate posterior

distribution of bl. The prior variance σ20l is estimated using (3.67).

The IBSS algorithm to fit linear SuSiE is a variational approximation algorithm (see

Section 3.2.3), while the GIBSS algorithm is a heuristic procedure; we do not have a clear

understanding of the exact objective function it optimizes, and there is no guarantee of

convergence. However, GIBSS has the advantages of being modular and simple, and it has

shown good empirical performance, see Section 3.7 for simulation results.
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Algorithm 3: Generalized Iterative Bayesian stepwise selection (GIBSS)
Data: X,y, δ

Require: Number of effects, L

Require: A function CoxPH-SER(X,y, δ,o;σ20)→ (α,µ1,σ1) that computes the

approximate posterior distributions under CoxPH-SER;

Initialization: posterior means b̄l = 0, σ20l = 1 for l = 1, . . . ,L; o = 0; repeat

for l ∈ 1, . . . ,L do
ol ←X

∑
l′ ̸=l b̄l′

(αl,µ1l,σ1l)← CoxPH-SER(X,y, δ,ol;σ
2
0l)

σ20l ←
∑p

j=1 αjl(µ
2
1jl + σ21jl)

b̄l = αl ◦ µl “◦" denotes element-wise multiplication.

end

until convergence criterion satisfied ;

Return: α1,µ11,σ11, . . . ,αL,µ1L,σ1L

3.7 Simulation

First, we assess the behaviour of different Bayes factors (BFs) as the accuracy of BF can have

direct impact on CoxPH-SuSiE results. Then, we conduct simulation using real genotype

data to assess the performance of our method and compare with other methods.

3.7.1 Data generation procedure

We define the following function to generate data:

(y, δ,X)← simsurv(X,m, σ20, r), (3.73)

where y and δ are both size n vectors, storing the observed times and survival status for n

individuals. X is a genotype matrix of size n× p. We use the real genotype data from UK
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biobank or GTEx Consortium for X. m is the number of non-zero effects, σ20 is the prior

variance of non-zero effects and r is the censoring level. simsurv() takes the following steps

to generate data:

1. Generate a vector b of size p + 1, where the first element is 1 and the rest are all 0s.

Generate m non-zero effect sizes from N(0, σ20) and place them to b at the m non-zero

indexes, which are sampled from {2, 3, · · · , p + 1}. Then, b represents the true effect

size vector and the first element in b represents the intercept.

2. Compute survival rate λsi = (1,xi)
T b for each individual i, where xi is a vector of size

p denoting individual i’s genotype.

3. Compute censor rate λc given censor level r and survival rate λsi , i = 1, · · · , n.

λc

λc + λ̄s
= r, λc =

rλ̄s

1− r
, (3.74)

where λ̄s =
∑n

i=1 λ
s
i/n is the mean of survival rates across n individuals. Additional

discussion about this step is available in Supplementary B.3.

4. Simulate survival time Ti and censor time Ci for each individual i from exponential

distribution:

Ti ∼ exp(λsi ) (3.75)

Ci ∼ exp(λc), (3.76)

where λsi and λc are the rate parameters for the exponential distributions.

5. Determine observed time yi and survival status δi for each individual i, yi = min(Ti, Ci).

δi = 1 if Ti ≤ Ci otherwise 0.

This data simulation scheme satisfies the proportional hazard assumption.
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3.7.2 Simulation for Bayes factor comparison

We compare the performance of different Bayes factors (BFs): Laplace BF (BFL), Wakefield

BF (BFW) and Gauss-Hermite quadrature BF (BFGH) under CoxPH model with one single

covariate.

To generate simulation data, we follow the procedure described in Section 3.7.1. We

set the sample size n to 500000, which is similar to the sample size of UK biobank. The

genotype xi is generated using Binomial distribution with a pre-specified minor allele fre-

quency (MAF). We vary the effect size of the single effect variable, (0.01, 0.1). We choose

these effect sizes as they are similar to the effect size estimates from GWAS. We also ex-

periment with different censoring level r = (0, 0.2, 0.4, 0.6, 0.8, 0.99) and different MAF =

(0.001, 0.01, 0.1). For each scenario, 50 replicates are conducted. For computing BFGH, we

used the gauss.quad.prob() function from a R package statmod [Smyth et al., 2017], and

the number of nodes were set to 32. This should result in an accurate BF estimate, at least

more accurate than the other two approximate BFs.

Figure 3.1 and Figure 3.2 summarize the comparison of different approximate BFs. We

view BFGH as the gold standard as it is the most accurate one and plot the other two BFs

against BFGH. All comparisons are on the log10 scale. When the true effect size is tiny

(b = 0.01), both BFW and BFL are accurate when censoring level is not too high. When

the censoring level is extremely high (r = 0.99) and the minor allele frequency is very low

(MAF = 0.001), we can see BFW diverges from BFGH. When the true effect size is larger

(b = 0.1), BFW over estimates the true BF in general (except when censoring level is 0.99

and MAF is 0.001), and the difference between BFW and BFGH gets larger as the true BF

gets larger. Across all scenarios, BFL is accurate. Therefore, we use BFL in CoxPH-SuSiE.

Even though BFGH can be more accurate, it is computationally intensive, taking an average

of 78.07 seconds when the sample size is n = 500000.

70



−3.5 −2.5 −1.5 −0.5

−
4

−
3

−
2

−
1

0

censor=0, MAF=0.001

log10(BFGH)
O

th
er

 lo
g 1

0(
B

F
s)

log10(BFL)
log10(BFW)

−4 −3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0
1

censor=0, MAF=0.01

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−5 0 5 10

−
5

0
5

10

censor=0, MAF=0.1

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−3.0 −2.0 −1.0

−
4

−
3

−
2

−
1

0

censor=0.2, MAF=0.001

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−4 −3 −2 −1 0
−

5
−

4
−

3
−

2
−

1
0

1

censor=0.2, MAF=0.01

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

censor=0.2, MAF=0.1

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−3.0 −2.0 −1.0 0.0

−
4

−
3

−
2

−
1

0
1

censor=0.4, MAF=0.001

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−4 −3 −2 −1 0 1 2

−
4

−
2

0
2

censor=0.4, MAF=0.01

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−4 −2 0 2 4 6

−
5

0
5

censor=0.4, MAF=0.1

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5

−
4

−
3

−
2

−
1

0

censor=0.6, MAF=0.001

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−4.0 −3.0 −2.0 −1.0

−
5

−
4

−
3

−
2

−
1

0

censor=0.6, MAF=0.01

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−4 −2 0 2

−
6

−
4

−
2

0
2

4

censor=0.6, MAF=0.1

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−2 −1 0 1

−
3

−
2

−
1

0
1

2

censor=0.8, MAF=0.001

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0
1

censor=0.8, MAF=0.01

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−5 −4 −3 −2 −1 0

−
6

−
5

−
4

−
3

−
2

−
1

0
1

censor=0.8, MAF=0.1

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

censor=0.99, MAF=0.001

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−2.0 −1.5 −1.0

−
3

−
2

−
1

0

censor=0.99, MAF=0.01

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

−3 −2 −1 0

−
4

−
3

−
2

−
1

0
1

censor=0.99, MAF=0.1

log10(BFGH)

O
th

er
 lo

g 1
0(

B
F

s)

log10(BFL)
log10(BFW)

Figure 3.1: Scatter plots of Bayes Factors (BFs) on log10 scale under different censoring
levels and minor allele frequencies. The effect size of the single variable in CoxPH model is
0.01. The grey solid line represents y = x.
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Figure 3.2: Scatter plots of Bayes Factors (BFs) on log10 scale under different censoring
levels and minor allele frequencies. The effect size of the single variable in CoxPH model is
0.1. The grey solid line represents y = x.
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Simulation for methods comparison

We compare our method, CoxPH-SuSiE, with the following methods: BVSNLP of Nikooiene-

jad et al. [2020], survival.svb of Komodromos et al. [2022] and R2BGLiMS of Newcombe et al.

[2017]. R2BGLiMS uses a Weibull regression model, which is less flexible than CoxPH re-

gression, but this shouldn’t cause a problem since our survival data is simulated under an

even simpler distribution, the exponential distribution, which results in a constant baseline

hazard under proportional hazards models. This can be viewed as a special case for Weibull

regression and CoxPH regression. Additionally, we compare CoxPH-SuSiE with a heuristic

approach, which involves first obtaining GWAS summary statistics using CoxPH regression,

followed by fine-mapping with SuSiE.RSS developed by Zou et al. [2022]. SuSiE.RSS is

based on linear SuSiE, and its derivation does not extend to nonlinear regression, making

this approach heuristic.

To compare different methods, we consider two simulation settings: one with a moderate

sample size and relatively large effect sizes, and another with a large sample size and smaller

effect sizes. In the former setting, referred to as the GTEx simulation, we use real genotype

data from GTEx Consortium et al. [2015], with a total sample size of n = 574. For each

simulation replicate, we randomly select a region on gene ENSG00000132855. In the latter

setting, which we call UKB simulation, we use real genotype data from the UK Biobank

Bycroft et al. [2018a], sub-sampling n = 50000 individuals. For each simulation replicate, we

randomly select a region on Chromosome 3. The data generation parameters for both simu-

lations are summarized in Table 3.1. In each simulation setting, we vary the number of effect

variables from 0 to 3 and censoring level r. In GTEx simulation, r = (0, 0.2, 0.4, 0.6, 0.8). We

ran 20 replicates for each scenario. In UKB simulation, we also include a scenario with an

extremely high censoring level, therefore, r = (0, 0.2, 0.4, 0.6, 0.8, 0.99). We ran 10 replicates

for each scenario.

For the GTEx simulation, we used the default number of iterations provided by each
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Genotype data Sample size (n) Number of variables (p) prior variance (σ20)
GTEx 574 1000 1

UK Biobank 50000 1000 0.1

Table 3.1: Summary of two data generation settings.

methods software. However, for the UKB simulation, since the sample size is much larger,

running the default number of iterations for some methods was time-consuming. Therefore,

we made these methods to run similar amount of time. For SuSiE.RSS, R2BGLiMS and

BVSNLP, we still use the default number of iterations. For CoxPH-SuSiE and survival.svb,

we ran at most 10 iterations and 100 iterations, respectively. For running CoxPH-SuSiE and

SuSiE.RSS, we set L = 5.

Figure 3.3 and 3.4 visualize the distribution of posterior inclusion probabilities (PIPs) of

different methods across two simulations. The PIPs of survival.svb show significant incon-

sistency with CoxPH-SuSiE PIPs. Survival.svb tends to have PIPs either close to 0 or 1,

except when censor rate is 0.99, and it assigns a PIP value of 1 to many non-effect variables.

This suggests survival.svb may have a high false positive rate. The PIPs of other meth-

ods (BVSNLP, R2BGLiMS and SuSiE.RSS) are slightly more consistent with CoxPH-SuSiE

PIPs. When comparing CoxPH-SuSiE PIPs to SuSiE.RSS PIPs in GTEx simulation, we ob-

serve more effect variables in the bottom-right half of the plots, indicating that SuSiE.RSS

may have lower power than CoxPH-SuSiE.

To assess the quality of the PIPs, we check the calibration of each method. Variables

were first grouped into bins based on their PIPs. And then we plot the mean reported PIP

(x-axis) against the empirical proportion of effect variables in that bin, see Figure 3.5 and 3.6.

A well-calibrated method should have mean PIP agrees with observed frequency. In GTEx

simulation, CoxPH-SuSiE and SuSiE.RSS are the best calibrated methods, while survival.svb

is the worst. In UKB simulation, CoxPH-SuSiE again is the best one and survival.svb is the

worst. BVSNLP, SuSiE.RSS and R2BGLiMS showed poorer calibration compared with in

GTEx simulation.
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In addition to directly comparing PIPs, we plotted power versus false discovery rate

(FDR) at different censoring levels, as shown in Figure 3.7 and Figure 3.8. In both sim-

ulations, survival.svb exhibited a very high FDR, consistent with the PIP results. As the

censoring level increased, the performance of all methods declined. In the GTEx simulation,

CoxPH-SuSiE and BVSNLP showed similar strong performance, followed by SuSiE.RSS. In

the UKB simulation, CoxPH-SuSiE was the best-performing method, followed by BVSNLP

and SuSiE.RSS. These results suggest that in fine-mapping settings where variables are

highly correlated with tiny effect sizes, CoxPH-SuSiE is the most effective method. Even

in scenarios with larger effect sizes, such as in the GTEx simulation, CoxPH-SuSiE has the

advantage over BVSNLP that it provides credible sets for uncertainty quantification, which

BVSNLP does not offer.

Among all the methods, only CoxPH-SuSiE and SuSiE.RSS directly output credible sets

(Definition 1). Figure 3.9 and Figure 3.10 compare the coverage, power and mean absolute

correlation of the 95% CSs across different numbers of non-zero effects and different levels of

censoring. Coverage is the proportion of CSs that contain an effect variable, and power is the

overall proportion of CSs that contain an effect variable. Mean absolute correlation reflects

the purity of the CS. From Figure 3.9 and Figure 3.10, we can see under both simulation

settings, the CSs of CoxPH-SuSiE have high coverage, close to or higher than 90%. The CSs

of CoxPH-SuSiE not only achieve higher coverage, they also have higher power than CSs of

SuSiE.RSS in all cases. In GTEx simulation, the CSs of CoxPH-SuSiE are purer than those

of SuSiE.RSS, while in UK Biobank simulation, CSs of SuSiE.RSS have higher purity more

often.

3.8 Real data analysis

To demonstrate our method on real data, we analyzed self-reports of doctor-diagnosed

asthma (data field 3786 and 22147) on UK Biobank samples. The UK Biobank is a very
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Figure 3.3: Comparison of posterior inclusion probabilities (PIPs) of different methods on
GTEx genotype data. Grey circles represent zero effect variables and red dots represent
non-zero effect variables. The blue dashed line represents y = x.
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Figure 3.4: Comparison of posterior inclusion probabilities (PIPs) of different methods on
UK biobank genotype data. Grey circles represent zero effect variables and red dots represent
non-zero effect variables. The blue dashed line represents y = x.
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Figure 3.5: Assessment of PIP calibration in GTEx simulation. Variables across all simu-
lations were grouped into 10 equal bins from 0 to 1 based on their PIP values. Bins with
fewer than 10 observations are removed in plotting.
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Figure 3.6: Assessment of PIP calibration in UKB simulation. Variables across all simula-
tions were grouped into 10 equal bins from 0 to 1 based on their PIP values. Bins with fewer
than 10 observations are removed in plotting.
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Figure 3.7: Power versus FDR at different censoring level in GTEx simulation. The open
circles highlight power versus FDR at PIP threshold of 0.95. FDR := FP/(TP+FP) and
power:=TP/(TP + FN) where FP, TP, FN and TN denote the number of False Positives,
True Positives, False Negatives and True Negatives, respectively.
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Figure 3.8: Power versus FDR at different censoring level in UKB simulation. The open
circles highlight power versus FDR at PIP threshold of 0.95.
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Figure 3.9: Credible sets assessment under GTEx simulation. Statistics (coverage, power
and mean absolution correlation) are averaged across data replicates.
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Figure 3.10: Credible sets assessment under UKB simulation. Statistics (coverage, power
and mean absolution correlation) are averaged across data replicates.

large, population-based prospective study, with detailed phenotype and genotype data from

over 500,000 participants in the United Kingdom, with ages between 40 and 69 at time of

recruitment [Sudlow et al., 2015, Bycroft et al., 2018a]. Before conducting fine-mapping

analysis, there are two questions we want to assess.

First, whether modeling time to disease onset using CoxPH regression is more power-

ful than modeling disease case-control status using logistic regression. Green and Symons

[1983] described the theoretical relationship between CoxPH model and logistic model in

prospective cohort studies. Under a constant baseline hazard, they show that when the

follow-up period is short and the disease is relatively rare with not too great risk factors,

the regression coefficients of logistic model approximate those of CoxPH model. In contrast,

the approximation becomes poorer for more common diseases, longer follow-up time, and

large effect risk factors. Staley et al. [2017] assessed the performance of the two models using

simulated and real genetic data in cohort studies. They concluded that CoxPH model results
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in a modest improvement in power to detect SNP–disease associations, and the improvement

increased as the disease incidence increased. Additionally, logistic regression yielded inflated

effect size estimates, especially for SNPs with larger effect.

Second, whether the proportional hazard (PH) assumption satisfies in asthma. Asthma

is known to be a complex chronic respiratory disease, which may comprise many different

conditions [Fuchs et al., 2017]. Growing evidence shows childhood onset and adulthood onset

asthma have different sex ratios, triggers of symptoms, associated comorbidities, severity and

potential genetic risk loci [Larsen, 2000, Pividori et al., 2019, Ferreira et al., 2019]. If the

PH assumption holds, the hazard ratio among individuals with different genotype would be

constant across lifetime in CoxPH model. However, there are risk loci that are seemingly

specific to childhood onset or adulthood onset asthma [Pividori et al., 2019]. A locus that

only affects childhood asthma risk won’t have any effect in one’s adulthood. Consequently,

the hazard ratios across different genotype change over time, violating the PH assumption.

To evaluate the first question in asthma, we compared the log-likelihood ratios of top

SNPs under CoxPH model and logistic model. For the second question, we perform three

sets of association analysis: all asthma combined (AA), childhood onset asthma (COA) and

adulthood onset asthma (AOA). Moreover, we plot Kaplan-Meier curves at SNPs with most

significant p-values and large effect sizes.

3.8.1 Data preprocessing & association studies

To limit confounding due to population structure, we focus on “White British" (data field

22009) in UK biobank. We used genotype data of version 3, and removed samples based on

the following exclusion criteria, similar to Zou et al. [2023]: (1) individuals who don’t know

or don’t wish to answer their asthma diagnosis age; (2) individuals who withdraw from UK

biobank; (3) mismatch between self-reported and genetic sex; (4) outlier genotype samples

based on heterozygosity and/or rate of missing genotypes defined by UK Biobank data
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field 22027; (5) individuals who have at least one relative in the cohort based on kinship

calculations (samples with a value other than zero in data field 22021). After filtering

genotype samples according to these criteria, 273543 samples remained.

We began by computing summary statistics of associations under logistic model and

CoxPH model. We selected 9 genomic regions based on results in Pividori et al. [2019],

which include loci shared between COA and AOA (2q12.1, 6p21.33, 10p14, 11q13.5, 12q13.11,

15q22.2), COA-specific loci (1q21.3, 17q12) and AOA-specific loci (2q22.3).

To prepare samples for AA logistic association analyses, we simply included all UK

Biobank samples that met the filtering criteria. For COA and AOA logistic association

analyses, we used the definitions outlined in Pividori et al. [2019]. Specifically, COA cases

are individuals who developed asthma before age 12, while controls are those who either never

developed asthma or developed it after age 26. For AOA, cases are those who developed

asthma between ages 25 and 65, with controls being individuals who never developed asthma.

A summary of samples used in the three sets of analysis is provided in Table 3.2.

For CoxPH association analysis, we used the same samples as logistic association analysis.

For AA analysis, the time to event is the age of asthma onset for people who got asthma.

For people who haven’t got asthma, we use age at the most recent visit to assessment center

as censoring time (data field 21003). For COA, the time to event is the age of asthma onset

for COA cases, and is treated as censored at age 12 for controls. For AOA, the time to event

is age of asthma onset for AOA cases, and is treated as censored at their current age (or

age 65 if their age exceeds 65) for controls. To compute CoxPH associations, we used an R

package “SPACox" [Bi et al., 2020], which employs saddlepoint approximation to calibrate

the test statistics.

For both association analysis, we adjusted for 10 genetic principal components (PCs)

stored in data field 22009 and the sex in data field 31.
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AA COA AOA

Case People with asthma Asthma onset ≤ 12 Asthma onset between 26-65

Control People without asthma
People without asthma +

Asthma onset ≥ 26
People without asthma

Table 3.2: A summary of samples used in AA/COA/AOA logistic analysis

3.8.2 Exploratory data analysis results

To evaluate whether the CoxPH model extracts more information compared to the logistic

model, we compared the logarithm of the likelihood ratios (log(LR)) for SNPs under both

models. The log(LR) is defined as the logarithm of the ratio of the likelihood of the single

SNP model to that of the null model, which directly reflects the strength of evidence provided

by the data under a particular model. We first identified the top SNPs from either the

CoxPH or logistic associations within each genomic region and then calculated the log(LR)

for each signal. As shown in Figure 3.11, a significant proportion of SNPs have a higher

log(LR) under the CoxPH model, specifically 88.89%, 55.56%, and 61.11% in the AA, COA,

and AOA analyses, respectively. This highlights the advantages of conducting time-to-event

(TTE) analysis.

To illustrate the CoxPH association results in regions containing different types of signals,

we plot 4 examples in Figure 3.12. Panels (b) and (d) highlight regions with shared signals

between AOA and COA, while panel (a) shows COA-specific loci, and panel (c) shows AOA-

specific loci. Additionally, we selected two highly significant SNPs from region 1q21.3 (COA-

specific) and 12q13.11 (AOA-specific) and plotted Kaplan-Meier (KM) curves by genotype

(see Figure 3.13). For the SNP rs12123821 in 1q21.3, the survival probabilities of different

genotypes begin to diverge at a very young age, continuing until around age 20, after which

the hazards do not appear to differ. For the SNP rs11168252 in 12q13.11, the survival

probabilities of different genotypes remain similar before age 20, only beginning to diverge
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Figure 3.11: Log-likelihood ratios of top SNPs selected from AA, COA and AOA analysis
under logistic regression model and CoxPH model. The red solid line indicates the line of
x = y.
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Figure 3.12: CoxPH AOA/COA GWAS results in 4 different regions.
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Figure 3.13: Kaplan-Meier plots at two SNPs by genotype. rs12123821 is in COA specific
region 1q21.3 and rs11168252 is in AOA specific region 12q13.11.

afterward. These results suggest that the PH assumption doesn’t hold for the two SNPs,

and it is possible that the assumption may also fail for some other SNPs as well.

Given this consideration, we conduct three separate fine-mapping analyses: AA, COA,

and AOA. The rationale is that if a region predominantly contains SNPs specific to COA,

including AOA samples in the analysis could introduce noise rather than enhance power.

Conversely, if a region mainly contains shared signals for both AOA and COA, analyzing all

asthma samples together would be the most powerful approach.

3.8.3 Fine-mapping results

For the fine-mapping analysis, we used the same samples and methods for creating the time-

to-event phenotype and adjusted for the same covariates (sex and 10 genetic PCs) as in

the association analysis described in Section 3.8.1. Again, we focused our analysis on the 8

genomic regions: 1q21.3, 2q12.1, 2q22.3, 10p14, 11q13.5, 12q13.11, 15q22.2 and 17q12. To

reduce computational burden, we only include SNPs within ± 250 kb of the top signal for

each region. To run CoxPH-SuSiE, we use the Laplace Bayes Factor as described in Section

3.4.2 and set the number of single effect vectors to L = 10. The convergence criterion was
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set to 0.001, with a maximum of 10 iterations. For the CoxPH-SuSiE credible sets (CSs),

we reported CSs with a coverage of 0.95 and minimal absolute correlations within the CS

greater than 0.5.

The fine-mapping results based on AA, COA and AOA samples are available in Figure

3.14 and 3.15. We can see the top signals are all included in the CSs if CoxPH-SuSiE output

any. Additionally, the fine-mapping results across AA, COA and AOA samples are generally

consistent with one another.

For each region, we then focus on the most powerful analysis, the one which generated

the smallest p-value for association among the AA, COA and AOA samples. We call them

the preferred analysis for each region, and we summarised the CoxPH-SuSiE credible sets of

the preferred analysis in Table 3.3. From Figure 3.14 and 3.15, along with Table 3.3, we can

see 4 regions contain more than one CS, suggesting the presence of multiple causal SNPs

within these regions. The most notable region is 10p14, which has 4 CSs. Interestingly, no

nearby protein-coding genes were identified around the top SNPs within the 10p14 CSs.

Additionally, we observed that in regions with multiple CSs, one CS typically harbors the

strongest signals, while the other CSs include SNPs with less significant p-values, such as in

region 11q13.5. Some of these SNPs do not even reach the GWAS significance threshold, as

seen in region 2q12.1. This may occur when a region contains more than one causal SNP, say

two, with one having a larger effect size and the other having a smaller effect. When analyzing

SNPs individually, the one with the smaller effect may not achieve GWAS significance.

However, when conditioning on the SNP with the larger effect (thus reducing noise), the

weaker causal SNP can become more significant. To test this hypothesis, we performed

conditional analysis in regions 11q13.5 and 2q12.1, where we conditioned on the top SNP

when computing the association statistics of other SNPs in the region. The conditional p-

values are summarized in Figure 3.16. After conditioning on the top SNP, the SNPs in the

other CSs became the top signals in the region. These findings support our hypothesis and
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further validate the CoxPH-SuSiE results.

We further examined the CoxPH-SuSiE CS summary in Table 3.3. Most of the top vari-

ants in the CSs are located near multiple protein-coding genes, except for those in region

10p14. Among these variants, rs61816761 is particularly interesting. This variant is within

the coding region of the FLG gene, resulting in a premature stop codon, and is also lo-

cated within 2KB upstream of the FLG-AS1 gene. ClinVar [Landrum et al., 2016] reports

this variant as a pathogenic or likely pathogenic mutation associated with Dermatitis and

Ichthyosis vulgaris [Churnosov et al., 2022, Sun et al., 2022, Smieszek et al., 2020, Smith

et al., 2006]. Additionally, FLG is recognized as a susceptibility gene for asthma and related

traits [Vercelli, 2008].

Other notable variants include rs72823641, rs11071559, rs4795399, and rs56389811, which

are located within the intronic regions of the IL1RL1, RORA, GSDMB, and HDAC7 genes,

respectively. For SNP rs11236797, Nasrallah et al. [2020] found that its polymorphisms

were significantly associated with both basal and stimulation-driven GARP expression on

CD4+,CD127−,CD25+ regulatory T cells, and further demonstrated that this variant can

drive GARP expression, identifying GARP as a potential target for immune-mediated disease

therapy. The significance of the RORA SNP rs11071559 has also been replicated in multiple

studies [Cai et al., 2018, Li et al., 2013, Hirota et al., 2011].

As for the nearby genes, HDAC7 is a histone deacetylase involved in transcriptional

regulation. This gene plays a crucial role in the function of regulatory T cell [Axisa et al.,

2022]. It has also been implicated in asthma and allergic diseases, potentially through

epigenetic modifications [Morin et al., 2023]. All above biological evidence supports the

validity of the CoxPH-SuSiE results. However, the role of the variants in other credible sets

(CSs) with less significant p-values remains unclear.
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Figure 3.14: CoxPH-SuSiE results for region 11q13.5, 12q13.1, 17q12, 10p14. Each dot
represents the p-value of single SNP association based on CoxPH regression. The colored
dots represent SNPs in CoxPH-SuSiE CSs and different colors represent different CSs.
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Figure 3.15: CoxPH-SuSiE results for region 1q21.3, 15q22.2, 2q12.1 and 2q22.3. Each dot
represents the p-value of single SNP association based on CoxPH regression. The colored
dots represent SNPs in CoxPH-SuSiE CSs and different colors represent different CSs.
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Region Analysis Size min.abs.corr Variant − log10(p.value) Nearby genes

2q22.3 AOA 32 0.93 rs7571606 8.55 TEX41

2q12.1 AA
19 0.99 rs72823641 41.32 IL1R1, IL18R1, IL18RAP

61 0.99 rs10179654 1.52 IL1R1, IL18R1, IL18RAP

15q22.2 AA 18 0.77 rs11071559 12.37 RORA, ICE2

1q21.3 COA
2 0.85 rs12123821 32.87 HRNR, RPTN, FLG

1 1 rs61816761 45.71 FLG, FLG2, CRNN

10p14 AA

2 0.89 rs11256016 18.12

2 0.97 rs72782675 10.21

3 0.98 rs12413578 25.37

10 1 rs2197415 35.61

17q12 COA 8 1 rs4795399 84.71 GSDMB, LRRC3C, ORMDL3

12q13.11 AOA 11 0.67 rs56389811 10.27 HDAC7, SLC48A1, VDR

11q13.5 AA
10 0.9 rs11236797 37.24 LRRC32, EMSY, TSKU

2 0.94 rs55646091 24.29 LRRC32, EMSY, TSKU

Table 3.3: CoxPH-SuSiE credible sets summary based on the preferred analysis. Size: the
size of the CS; min.abs.corr: minimum absolute correlation of the CS; Variant: the most
significant SNP in the CS; − log10(p.value): − log10(p.value) of the most significant SNP.
Nearby genes: protein-coding genes within ± 300 kb of the variant. If more than three genes
fall within this window, we report only the three closest ones.

3.9 Discussion

As the analysis of time-to-event (TTE) phenotypes becomes more prevalent in genetics,

there is a growing need for method development in downstream analyses, such as fine-

mapping, which is critical for identifying causal variants. Fine-mapping is typically framed
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Figure 3.16: Conditional p-value plot in regions 11q13.5 and 2q12.1. All the SNP-trait
association p-values are calculated by conditioning on the top SNP of the region. Red dots
represent SNPs in the other CoxPH-SuSiE CS which doesn’t include the top signal.

as a variable selection problem, and there are existing Bayesian variable selection methods

for TTE phenotypes, including methods from Newcombe et al. [2017], Nikooienejad et al.

[2020] and Komodromos et al. [2022]. However, these methods have not been applied to

fine-mapping contexts where correlations among nearby variants can be extremely high,

exceeding 0.99 or even equaling 1. To deal with this challenge, we build on the leading fine-

mapping method, the “Sum of single effect" regression (SuSiE) developed by Wang et al.

[2020], and extend it to the Cox proportional hazards (CoxPH) regression model. We call

the new method for fine-mapping TTE phenotype CoxPH-SuSiE.

CoxPH-SuSiE incorporates the SuSiE parameterization for the effect vector and utilizes a

similar modular fitting procedure, which we call the “Generalized Iterative Bayesian Stepwise

Selection" (GIBSS). We also introduce a novel Laplace Bayes factor (BF), which outperforms

the Wakefield BF in SuSiE for CoxPH model. Through two simulation scenarios—one with

large variable effect sizes and a small sample size, and another with tiny variable effect sizes

93



but a large sample size—we demonstrate that CoxPH-SuSiE consistently delivers superior

performance compared to other methods. When applied to fine-map self-reported asthma

in the UK Biobank, several top SNPs within CoxPH-SuSiE credible sets (CSs) were corrob-

orated by findings from other studies.

Despite its advantages, CoxPH-SuSiE has some limitations. First, in SuSiE, the fitting

algorithm is shown to be a coordinate ascent algorithm for optimizing a variational ap-

proximation to the SuSiE posteriors. However, the theoretical understanding of the GIBSS

procedure is currently insufficient, thus, the convergence cannot be guaranteed. Second,

the current implementation of CoxPH-SuSiE has some speed limitation. It takes about [xx]

time per iteration on a dataset with a sample size of n = 50000 and the number of variants

p = 1000. The most time-consuming part is fitting the single variable CoxPH regression

model pL times per iteration, where L is the pre-specified number of single effect vectors.

Although CoxPH-SuSiE typically requires only a few iterations (fewer than 10) to achieve

optimal performance among compared methods, this process can still be slow when applied

to large datasets, such as the entire UK Biobank. Our current solution is to parallelize the

computation of fitting the single variable CoxPH regression.

When applying CoxPH-SuSiE to real data, it is important to consider whether the model’s

proportional hazards (PH) assumption holds for the phenotype of interest. As observed in

the UK Biobank’s self-reported asthma data (Section 3.8), the PH assumption may fail for

many SNPs. With this consideration, our approach is to conduct both pooled and separate

fine-mapping analyses by dividing asthma cases into childhood-onset asthma (COA) and

adult-onset asthma (AOA), using an age threshold based on Pividori et al. [2019]. However,

this threshold is somewhat arbitrary, and determining a reasonable age threshold is itself

could be an interesting problem in the study of asthma subtypes. For TTE phenotype fine-

mapping where the PH assumption does not hold, a better approach might be to incorporate

time-varying effects into the CoxPH model, such as in Ojavee et al. [2023]. This shows the
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potential for further methodological advancements in survival fine-mapping analysis with

time-varying effects.
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CHAPTER 4

IMPROVING ESTIMATION EFFICIENCIES FOR

FAMILY-BASED GWAS BY INTEGRATING LARGE

EXTERNAL DATA

Abstract

Genome-wide association studies (GWASs) have identified numerous genetic variants linked

to complex traits. However, the marginal associations not only reflect direct genetic effects

but also contributions from nearby causal variants and the genotype of individuals’ relatives.

For instance, the genetic nurture effect [Kong et al., 2018], where parental genotypes influence

offspring outcomes by shaping the environment provided to them. These indirect genetic

effects complicate the interpretation of GWAS findings.

Family-based genetic studies offer a robust method to disentangle these effects, as the

random segregation of parental genotypes and genetic differences between siblings simulate

the conditions of a randomized controlled trial. However, the limited availability of family-

based data results in less precise estimates due to smaller sample sizes. To address this,

we introduce a calibration method that leverages external population-based data, such as

GWAS summary statistics, to improve the precision of family-based estimates. By integrat-

ing biased but more precise estimates from large-scale population data, our method reduces

the variance of family-based estimates. We validate this approach through theoretical anal-

ysis, simulations, and real data from the UK Biobank, demonstrating its utility in improving

the accuracy of genetic effect estimates and the downstream analysis, such as Mendelian

randomization.
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4.1 Introduction

Genome-wide association studies (GWASs) have discovered thousands of genetic variants

linked to complex human traits. Typically, a GWAS is conducted on nearly unrelated indi-

viduals to estimate the marginal association between each single-nucleotide polymorphism

(SNP) and a particular phenotype. While the primary focus of GWAS is to identify the

SNP’s direct effect on the trait, the marginal association also reflects other factors beyond

the direct effect of the variant [Veller and Coop, 2024, Davies et al., 2019].

Firstly, the effect size estimate of a SNP includes contributions from other causal SNPs in

linkage disequilibrium (LD). Secondly, it captures effects of demography, such as assortative

mating and residual population structure. More recently, researchers including Lee et al.

2018, Kong et al. 2018, Howe et al. 2022 have identified a non-negligible proportion of

indirect genetic effects in GWAS effect size estimates, where the genotype of an individual’s

relatives can affect the individual’s phenotype. An example of this is the genetic nurture

effect, where parental genotype influences offspring outcomes by shaping the environment

provided by the parents [Kong et al., 2018].

Understanding the sources of variant-trait associations is critical for several reasons.

First, quantifying the direct contribution of genetic variants helps to identify and prioritize

causal variants. Secondly, there is a growing interest in understanding how indirect genetic

effects shape phenotypes [Balbona et al., 2021, Wu et al., 2021, Tubbs et al., 2020, Evans

et al., 2019]. Thirdly, downstream analyses, such as Mendelian randomization (MR), can be

biased without accounting for indirect genetic effects and other confoundings. The existence

of indirect genetic effects and demographic confounders violate the independence assumption

of MR [Brumpton et al., 2020, Davies et al., 2019].

Young et al. [2019] suggest that ideally, GWAS should be performed with parental or

sibling genotypes as controls and using models that account for indirect genetic effects. The

reasoning is that given the parental genotypes, an offspring’s genotype results from the ran-
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dom segregation of genetic material during meiosis, which is close to randomized controlled

trial. This random segregation is uncorrelated with indirect genetic effects from relatives

and other confounding effects. Similarly, genetic differences between siblings are also ran-

dom and not confounded by indirect genetic effects from parents, population stratification,

or assortative mating.

However, family-based genotype data is much less prevalent than population genotype

data around the world. For example, the UK biobank contains approximately 500,000 in-

dividuals, whereas it only has 1,066 sets of trios (two parents and an offspring) and 22,666

sibling pairs [Bycroft et al., 2018b]. As a result, estimates derived from family data have

much larger standard errors and are much less precise. In this paper, we focus on reduc-

ing the variance of estimates derived from family-based genotype data. We developed a

calibration method in the regression context, where we leverage information from external

large data, which may not contain family genotype information, such as population-based

GWAS summary statistics. We use the biased estimates based on large population studies

to improve the efficiency of family data based estimates.

This chapter is structured as follows. Section 4.2 presents the regression models to which

our variance reduction method can be applied. Section 4.3 describes the approach to variance

reduction in details and Section 4.4 gives theoretical results on variance reduction. Section

4.5 assesses the performance of our new method and its impact on Mendelian randomization

using simulated data. Section 4.6 applies our method to analyze family data from UK

Biobank. Section 4.7 discusses the promise (and limitations) of our methods.

4.2 Regression Models

Our approach is derived from single locus model, where the effects of SNPs are estimated

one at a time. We assume a regression model has been built on a large external data to

understand the association between an outcome of interest Y and genotype G. Typically,

98



we have access to the summary statistics of these associations. Meanwhile, we assume we

have full access to a smaller GWAS data with family information, referred to as “internal"

data. The internal data contains Y,G and family genotype F , such as the genotypes of

an individual’s parents or siblings. Therefore, we can build another regression model on

internal data to adjust for family genotype information F . We refer such a model as the

“full" model. We assume individuals in the internal data are i.i.d. observations, therefore,

for an individual i at SNP locus j, the full model is expressed as follows:

µij := E(Yi|Gij , Fij) (4.1)

g(µij) = ηij = b0j + b1jGij + b2jFij (4.2)

where Gij and Fij represent the genotype of individual i and his/her family genotype at

locus j. Here, Yi denotes the phenotypic value of individual i and µij is the conditional

expectation of Yi given (Gij , Fij). bj := (b0j , b1j , b2j) represents the effect sizes, with b0j

being the intercept. The conditional expectation µij is related to the linear predictor ηij via

a link function g(·). We use either identity link or logit link for g(·), which correspond to

linear regression or logistic regression.

Depending on the specific family study design, the family genotype Fij for individual i

can take different information. We summarized common choices for Fij in genetics literature,

see Table 4.1. In a parent+offspring or mother+offspring design, an individual’s genotype

Gij is often referred to as transmitted alleles Tij , as these alleles are inherited from the

parents. On the contrary, alleles that were not passed on are non-transmitted alleles NTij .

Here, Gm
ij and G

f
ij denote the genotype of individual i’s mother and father at locus j. In

sibling design, Gsibs
ij denotes the genotype summation of all the siblings (K in total) within

the family, including individual i. In scenario (1), the difference between the coefficients

of Gij and NTij , b1j − b2j , represents the direct genetic effect of Gij on Yi, which is also

equivalent to b1j in scenario (2). Scenario (3) is more flexible than (1) and (2), as it allows
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for different family genotype effects from maternal side and paternal side. For (5) or (6)

based on sibling data, b1j can also be interpreted as the direct genetic effect. When using

linear model on sibling data, though the latent effect model is more popular, we can always

replace fj by the measurable Gsibs
j to identify the same direct effect, see Supplementary C.1

for more discussion.
Study design Fij References

(1) Parents + offspring NTij Kong et al. [2018]
(2) Parents + offspring G

pa
ij = Gm

ij +G
f
ij Young et al. [2022]

(3) Parents + offspring (Gm
ij , G

f
ij) Brumpton et al. [2020], Young et al. [2022], Wu et al. [2021]

(4) Mother + offspring Gm
ij Evans et al. [2019]

(5) Siblings Latent fj shared by siblings Brumpton et al. [2020]
(6) Siblings Gsibs

j =
∑K

k=1Gkj Howe et al. [2022]

Table 4.1: Common choices for family genotype information in genetic literature.

4.3 Method for Variance Reduction

In this section, we describe our new method for variance reduction in details. The cen-

tral idea is to incorporate regression analysis results that use partial covariate information.

Specifically, we utilize the information from a reduced model, which excludes the family

genotype F in both the internal and external datasets. For an individual i at SNP j, the

reduced model we consider is:

µ̃ij := E(Yi|Gij) (4.3)

g(µ̃ij) = η̃ij = α0j + α1jGij , (4.4)

where µ̃ij is the conditional expectation of Yi given Gij . αj := (α0j , α1j) contains the

intercept and the effect size of Gij . We specify the same link function g(·) for both the full

model (4.2) and the reduced model. Again, the reduced model (4.4) has already been built

on external data in most cases, and we have access to the summary statistics. Therefore, we

only need to fit the full model and the reduced model on internal data.
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For a SNP j, let τj represent the quantity of interest. For instance, the direct genetic

effect τj = b1j−b2j in scenario (1) and τj = b1j in other cases listed in Table (4.1). We can fit

the full model (4.2) on internal data and obtain an estimate τ̂j , which we refer to as the raw

estimator. Our goal is to construct a new estimator for τj , which has smaller (asymptotic)

variance than the raw estimator τ̂j . Our approach for constructing the new estimator is

closely aligned with the methods described in Chen and Chen [2000]. Our method makes

the following assumption:

Assumption 1. Both the families in the internal data and unrelated individuals in the

external data are randomly sampled from the same population.

Under this assumption, for a single SNP j, we consider a class of estimators of the

following form:

{τ̂j − λ(α̂1j − α̂′1j), λ ∈ R}, (4.5)

where α̂1j and α̂′1j denote the estimates of α1j by fitting the reduced model on internal data

and external data. We solve for an optimal λ∗ such that the resulting estimator has the

lowest asymptotic variance in this class. We call such an estimator the calibrated estimator

for SNP j, denoted as τ̃j . The term (α̂1j−α̂′1j) helps to reduce the variance as it is correlated

with τ̂j . Furthermore, the calibrated estimator remains unbiased because α̂1j−α̂′1j has mean

0.

To find the optimal λ∗, we follow the strategy in Chen and Chen [2000] by first finding

the joint asymptotic distribution of (τ̂ − τ∗, α̂1 − α̂′1). Unlike the models discussed in Chen

and Chen [2000], our internal data can contain correlated individuals who are from the

same family. When the number of families go to infinity, we can still show that the joint

distribution of (τ̂ − τ∗, α̂1 − α̂′1) is multivariate normal (we omit index j here for notation

101



convenience):

√
n

 τ̂ − τ∗

α̂1 − α̂′1

→ N

0

0

 ,

v11 v12

v21 v22


 , (4.6)

where τ∗ denotes the true value of τ . The derivation is available in Supplementary C.2.

v11, v12, v21, v22 constitute the variance-covariance matrix. They are all scalar values, which

can be estimated from data, and we denote the estimates as v̂11, v̂12, v̂21, v̂22. The conditional

asymptotic distribution of τ̂ − τ∗|α̂1 − α̂′1 is also normal:

√
n(τ̂ − τ∗)|

√
n(α̂1 − α̂′1) ∼ N (

√
nv12v

−1
22 (α̂1 − α̂1), v11 − v12v

−1
22 v21). (4.7)

Equating
√
n(τ̂ − τ̂∗) to its estimated conditional mean, we obtain the calibrated estimator,

τ̂ − τ∗ = v̂12v̂
−1
22 (α̂1 − α̂′1) (4.8)

τ̃ = τ̂ − v̂12v̂
−1
22 (α̂1 − α̂′1). (4.9)

Therefore, we set λ to v̂12v̂
−1
22 where v̂12 and v̂22 are estimated from data, see Supplemen-

tary C.3 for more details. Chen and Chen [2000] claimed that the estimator found by this

approach attains highest asymptotic efficiency within this class of estimators.

4.4 Theoretical Variance Reduction for the Calibrated Estimator

Denote the sample size of external data as N and internal data as n. To understand the

amount of variance reduction, we derived theoretical results for a single SNP under linear

regression models. Define the variance reduction comparing the variance of calibrated es-

timator and that of the raw estimator as VR := 1 − var(τ̃)/var(τ̂), by plugging (4.6) and
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(4.9), we have:

VR =
v212v

−1
22

v11
. (4.10)

When there is no sample overlapping between the external and internal data, under

parent+offspring design with scenario (1) in Table 4.1:

VR ≈ σ2(1− r)

2
(
σ2 + b22(1− r2)

) (
1 + n

N

) (4.11)

where σ2 is the variance of Y not explained by the single SNP. b2 is the coefficient of F

in the full model and r is the correlation between G and F . Supplementary C.4 shows the

derivation in this case. For complex human traits, σ2 is usually much larger than b2. And

under random mating, r is close to 0. When n/N → 0,VR→ 50%. Therefore, the maximum

variance reduction is 50% under parent+offspring design for a single SNP. This is essentially

equivalent to double the sample size of internal data.

Under sibling design with scenario (5), if there are two siblings for each family,

VR ≈ (1− π)

2

1− ρ

1 + n
N + πρ

, (4.12)

where π := cor(G,Gsib) is the genetic correlation between two siblings at a loci and ρ :=

cor(Y, Y sib) is the phenotypic correlation between two siblings. Again, under random mating

and random segregation, π is close to 0.5. If the phenotypic correlation is 0, the maximum

variance reduction is 25%. If the phenotypic correlation is 0.5, the maximum variance

reduction is 10%.

Note that to derive these theoretical results, we assume the genotype G and the noise

terms (both in full and reduced models) are independent. Although this assumption may

not satisfy in reality, these theoretical results are served as references for simulations and

real data analysis.
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4.5 Simulation

In this section, we conduct simulation to assess the performance of our calibrated estimator.

We first assess the variance reduction for single SNPs. Then, we evaluate how variants with

reduced variance might influence Mendelian randomization analysis.

4.5.1 Data Generation

To generate family genotype data, we apply the following data generation procedure. For

ith family,

1. Generate maternal and paternal genotype (Gf
i ,G

m
i ) from Binomial distribution G

f
i ,G

m
i ∼

Bin(2,f), where f is a vector of length p, containing the allele frequencies of p SNPs.

2. Generate parents phenotype using the following model:

bpa ∼ Np(0, σ
2I) (4.13)

Y
f
i = (G

f
i )

T bpa + ϵ
f
i , ϵ

f
i ∼ N(0, σ2) (4.14)

Ym
i = (Gm

i )T bpa + ϵmi , ϵmi ∼ N(0, σ2) (4.15)

where bpa denotes the causal effects of p SNPs in parents’ generation and (ϵ
f
i , ϵ

m
i )

denote the noise in parental phenotypes. (Y f
i , Ym

i ) represents some arbitrary parental

phenotype which could affect offspring outcomes.

3. Generate children’s genotype Gi based on Mendelian law of inheritance. That is, at

each locus, we randomly select one allele from mother and one from father to create

the child genotype.

4. Generate exposure trait and outcome trait in children’s generation using the following
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model:

b ∼ Np(0, σ
2I) (4.16)

Yi1 = GT
i b+ r1(Y

m
i + Y

f
i ) + ϵi1 ϵi1 ∼ N(0, σ2) (4.17)

Yi2 = βYi1 + r2(Y
m
i + Y

f
i ) + ϵi2, ϵi2 ∼ N(0, σ2) (4.18)

where b denotes the casual effects of p SNPs in children generation, and Yi1, Yi2 denote

the exposure and outcome trait for the child in family i. ϵi1 and ϵi2 denote the noise

term of exposure and outcome. β is the causal effect of exposure on outcome. r1, r2 ∈

[0, 1) control the level of indirect genetic effects on exposure trait and outcome trait.

To create binary exposure and outcome traits, we simply binarize continuous Yi1 and

Yi2 at a threshold where the resulting cases and controls are balanced.

The above procedure generates trio data, mother-father-child for each family. To create

sibling data, we simply repeat Step 3 to generate multiple siblings and then discard the

parents for each family. In our simulation, we set the number of SNPs p = 10 and f =

(0.61, 0.78, 0.15, 0.41, 0.37, 0.46, 0.51, 0.21, 0.64, 0.19). The sample size for external data is

N = 10000 and internal data is n = 1000. For trio design, we run simulations for different

values of r1 and r2, which control the contribution of indirect genetic effects in offspring

phenotype. σ2 is set to 1 all the time. For sibling design, we simulate two siblings for each

family. Addition to r1 and r2, we also vary the size of σ2 in offspring generation, which affects

phenotypic correlation between siblings. For each simulation setting, we run 500 replicates.

Across the replicates, bpa and b are generated once and kept the same.

4.5.2 Simulation results

First, we assess variance reduction empirically for both trio data and sibling data across

500 simulation replicates. For each SNP, we compute the empirical variance of the raw
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estimator and the calibrated estimator for its association with the exposure trait Y1 using

linear regression. Then, we compute the empirical variance reduction, see Figure 4.1. We

can see from Figure 4.1, the empirical variance reduction results are consistent with the

theoretical derivations for both trio and sibling data. For trio data, when the sample size

ratio between internal data and external data is 0.1, the amount of theoretical variance

reduction is around 0.45. In Figure 4.1 (a), the empirical variance reduction is also around

0.45 for all SNPs and is similar across different levels of indirect genetic effect. For sibling

data, as phenotypic correlation increases, the empirical variance reduction decreases. The

mean of empirical variance reduction is around 20% when the phenotypic correlation is near

zero, and about 10% when the phenotypic correlation is near 0.4. The theoretical values

are consistent with the empirical values, after accounting for the fact the actual sample size

ratio between internal data and external data is 0.1 in simulation.

We then conducted Mendelian randomization (MR) on the simulated data using two

MR methods: the Inverse-Variance Weighted Method (IVW) from Lawlor et al. [2008] and

MR.RAPS by Zhao et al. [2020], which provides robust inference for MR with many weak

instruments. We compare the MR results based on three different sets of summary statis-

tics: (1) calibrated estimators with corresponding standard errors, (2) raw estimators with

corresponding standard errors, and (3) external GWAS summary statistics. The first two

sets of summary statistics adjust for family genotype information using internal data, while

the external GWAS summary statistics do not. As a result, the MR estimates based on

the first two sets of summary statistics are unbiased, whereas those based on the external

GWAS summary statistics are biased when the indirect genetic effect on the outcome trait is

non-zero. For each single SNP, the calibrated estimator has a smaller variance compared to

the raw estimator, therefore, MR estimates based on the calibrated estimators should have

smaller variance than those based on the raw estimators. The MR results for both trio data

and sibling data are available in Figure 4.2.
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From plot (a)-(d) in Figure 4.2, we can see when r2 = 0, meaning there is no indirect

genetic effect on outcome trait, the MR estimates based on external GWAS summary statis-

tics is unbiased. As r2 increases, the bias in MR becomes more obvious. In trio data, the

reduction in the variance of MR estimates is around 40%-50% for different combinations

of (r1, r2). In sibling data, the reduction in the variance of MR estimates depends on the

phenotypic correlations of exposure and outcome traits. The maximum variance reduction

is achieved when phenotypic correlations of exposure and outcome traits are both close to

0, which is nearly 25%, see plot (f). When phenotypic correlations are very high, the vari-

ance reduction in MR estimates can be less than 5%. In sibling MR plot of IVW, plot (c)

of Figure 4.2, we can see the mean of MR estimates computed from calibrated estimators

and raw estimators are biased towards 0 when (r1, r2, σ
2) = (0, 0, 6). This is because the

noise level σ2 is too high, making the instruments too weak, and IVW will shrink the point

estimates towards 0. We don’t see this behavior in MR.RAPS, as it is a robust method for

weak instruments.

4.6 Data Analysis

We applied our new method to UK biobank family genotype data. The UK Biobank is a

very large, population-based prospective study, collected detailed phenotype and genotype

data from over 500,000 participants in the United Kingdom, with ages between 40 and 69

at time of recruitment Sudlow et al. [2015], Bycroft et al. [2018b]. We applied our variance

calibration approach to five different phenotypes: body mass index (BMI, data field 21001),

Diastolic blood pressure (DBP, data field 4079), Systolic blood pressure (SBP, data field

4080), diabetes (data field 2443) and education years (EduYrs, converted from data field

6138 following Howe et al. [2023]). We also performed Mendelian Randomization for BMI

on diabetes, BMI on EduYrs and height on EduYrs.
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Figure 4.1: Simulation results for empirical variance reduction of 10 SNPs based on linear
regression model. (a): empirical variance reduction across different r1 values on trio data.
(b): empirical variance reduction across different pheotypic correlation based on sibling data.
Each black dot represents empirical variance reduction of a single SNP. The red dashed lines
on both panels represent the value of theoretical variance reduction.
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Figure 4.2: Mendelian Randomization results on simulated data. The true causal effect in
simulation is β = 1. Plot (a),(b) contain results on trio data and plot (c)-(f) are results on
sibling data. In plot (a)-(d), the black dots are the mean of causal effect estimates across 500
replicates and the error bars are 1.96 times the standard deviation of the causal estimates.
The x-axes of plot (a) and (b) are different combinations of (r1, r2) values. The x-axes of
plot (c), (d) are different combinations of (r1, r2, σ2) values and the x-axes of (e), (f) are
the resulting average phenotypic correlations between sibling pairs for the exposure and the
outcome trait from corresponding (r1, r2, σ

2).
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4.6.1 Data preprocessing

To get family data from UK biobank, we first filter individuals based on kinship value

and identical-by-descent (IBD) value, suggested by Manichaikul et al. [2010], Bycroft et al.

[2018b]. Parent-offspring pairs and full sibling pairs both have kinship value between 1
25/2

and 1
23/2

. Parent-offspring pairs have IBD0 value ≤ 0.0012 and full sibling pairs have IBD0

value in the range of (0.0012, 0.365). These criteria result in 6263 parent-offspring pairs and

22646 sibling pairs. To divide these relative pairs into families, we implemented a graph

search algorithm, breath-first search (BFS) to find connected components in the data. In

total, there are 4958 families in parent-offspring data and 20128 families in sibling data. For

trio data, we use families with three individuals, father-mother-offspring and there are 1172

such families. To create external data, we remove individuals who have at least one relative

in the cohort based on kinship (samples with a value other than zero in data field 22021).

4.6.2 Result

For assessing variance reduction on the real data, we focused on independent SNPs associated

with BMI. We used 1000 genomes [Consortium et al., 2015] as the LD reference panel and

selected SNPs with p-value smaller than 0.01 based on summary statistics from GIANT

consortium [Locke et al., 2015, Wood et al., 2014] (a study of more than 250,000 European

descents for anthropometric traits). This results in 783 nearly independent SNPs. Then we

apply our variance calibration approach to these SNPs based on linear regression and Figure

4.3 summarizes the results. From (a) and (c), we can see the difference between calibrated

estimator and raw estimator are centered around zero. This is expected as our calibrated

estimator is unbiased. Both trio and sibling real data variance reduction are consistent

with our simulation results and theoretical results, see Figure 4.3 (b)(d). For trio data, the

average estimated variance reduction across all traits are around 50%. For sibling data, the

average estimated variance reduction varies in the range of 15% and 25%, depending on the
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phenotypic correlations.

Next, we performed Mendelian randomization analysis. We began with LD clumping,

where we used 1000 genomes as the LD reference panel. We selected SNPs based on summary

statistics of GIANT consortium using different p-value thresholds, that is, p-value smaller

than 1e−2, 1e−5 and 1e−8. Although SNPs with p-values larger than 1e−5 are considered

relatively weak instruments, there are MR methods that can handle weak instrumental

variables. They allow us to select more SNPs to perform MR, increasing the robustness

of the results potentially. For BMI as the exposure trait, the different selection thresholds

result in 783, 180 and 57 SNPs. For height as the exposure trait, the selection results in

1150, 564 and 346 SNPs, see the x-axes of Figure 4.4. To obtain the summary statistics on

selected SNPs, we use the linear regression model for all the traits (BMI, height, EduYrs

and diabetes).

We experimented with three MR methods, Inverse-Variance Weighted (IVW), MR.RAPS

(mle option) and MR.RAPS (shrinkage option). The results are available in Figure 4.4. For

trio data results of BMI on diabetes, we can see obvious variance reduction (27.25% - 85.93%)

comparing the standard error resulted from calibrated estimators and from raw estimators,

plot (b)-(c) of Figure 4.4. However, no variance reduction was observed in the IVW result,

Figure 4.4 (a). Besides, there are two additional concerns with these results. First, there are

noticeable differences in the point estimates derived from calibrated estimators compared to

those from raw estimators, plot (a) - (c) of Figure 4.4. Second, the causal effect estimate

of BMI on diabetes by MR.RAPS (mle) and MR.RAPS (shrinkage) is larger than those

reported in other MR studies [Corbin et al., 2016, Wang et al., 2021]. These discrepancies

are not fully understood yet and may be due to the small sample size of the trio data,

resulting in very noisy estimates.

For sibling MR results, Figure 4.4 (d) - (i), the variance reduction comparing the variance

of the causal effect estimate derived from calibrated estimators and raw estimators (estimated
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by IVW) ranges from 5.98% to 17.90% for BMI on EduYrs and 5.83% - 8.11% for height

on EduYrs. The other two MR.RAPS methods estimated the variance reduction to be

21.14% - 30.19% for BMI on EduYrs and 12.72% - 21.26% for height on EduYrs. The MR

point estimates based on calibrated estimators and those based on raw estimators are not

significantly different from zero. These results make sense intuitively as changing one’s BMI

or height are not likely to cause a change in one’s education years. On the contrary, the MR

point estimates based on external GWAS summary statistics all significantly differ from zero.

We believe this shows the bias in MR rather than the truth since EduYrs is a phenotype

with a stronger genetic nurture effect. When performing MR without adjusting for indirect

genetic effect on the outcome trait, this would introduce bias to the MR results.

4.7 Discussion

Growing evidence suggests that a non-negligible proportion of indirect genetic effects con-

tribute to complex human traits, such as educational attainment and cognition [Kong et al.,

2018, Warrington et al., 2018, Selzam et al., 2019, Howe et al., 2022]. These indirect ge-

netic effects are of particular interest for estimating parental influences and understanding

the broader genetic architecture of complex traits. Furthermore, Mendelian randomization

analyses may be biased if indirect genetic effects in outcome traits are not accounted for.

Conducting GWAS using family genotype data is a promising approach to address these

issues. However, this approach usually lacks of statistical power because large samples of

genotyped trios or siblings are rare. To address this limitation, we have developed a new

method that improves the estimation efficiency of family-based GWAS by integrating infor-

mation from standard GWAS summary statistics.

Our approach to variance reduction is very general and does not depend on specific

models. It only requires to fit a full and a reduced model on internal data, in addition to

the summary statistics from external data. This flexibility allows our method to be applied
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Figure 4.3: Variance reduction of five UK Biobank traits on 783 SNPs using linear regression.
All phenotypes were standardized and we adjusted for 10 genetic PCs, sex, age and age-
squared. Plot (a), (b) show results on trio data and (c), (d) show results on sibling data.
(a) and (c) show the difference between calibrated estimator and raw estimator. (b) and
(d) are boxplots of estimated variance reduction for all SNPs. Red crosses on plot (d) are
theoretical values where estimated phenotypic correlations were plugged in.
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Figure 4.4: Mendelian randomization results on UK biobank real data. Plot (a)-(c) use UKB
trio data as the internal data and (d)-(i) use sibling data as the internal data. The x-axes
indicate the p-value thresholds and the corresponding number of instrumental variables.
The error bar indicates 1.96 times the standard error output by the corresponding MR
method. IVW: Inverse-Variance Weighted, mr.raps.mle: MR.RAPS with the mle option and
mr.raps.shrinkage: MR.RAPS with the shrinkage option.
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across various family data designs and different covariate choices. Additionally, since our

method is built on single SNP models, similar to standard GWAS, it can be effectively used

for family-based GWAS. The method provides effect size estimates from a family genotype-

adjusted model of the user’s choice, along with calibrated variance for each SNP. Based on

our theoretical results and simulation results, the maximum variance reduction for a single

SNP is 50% for trio data, and 25% for sibling data. This is equivalent to increase the sample

size of internal data by a factor of 2 and 1.33. Using SNPs with reduced variance also lead

to variance reduction in Mendelian randomization results, which could potentially alter the

conclusions drawn about the causal relationship between traits.

However, assessing the variance reduction in MR is challenging. MR results can be

complicated by issues such as weak instruments, uncorrelated pleiotropy and correlated

pleiotropy [Morrison et al., 2020, Richmond and Davey Smith]. Furthermore, each MR

method has its own advantages and limitations, making it difficult to directly compare results

from external GWAS, family-based GWAS, and those using calibrated versus uncalibrated

estimators.

Although considerable amount of variance reduction can be achieved for individual SNPs,

it is still constrained by the size of the available family data. For example, the UK Biobank

includes only about 1,000 trios, and even with variance reduction doubling the effective

sample size to around 2,000, it is still not comparable with siling data sample size, which

is approximately ten times larger. As our MR results shown, causal estimates based on

trio data tend to be quite noisy, making it difficult to draw reliable conclusions. Therefore,

despite the smaller variance reduction, sibling data may still be preferable in practice due to

its much larger sample size.
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CHAPTER 5

APPENDICES

A Derivations, proofs, and additional definitions for Chapter 2

A.1 Posterior distribution for unknown means

Urbut et al. [2019] gives the posterior distributions only for the case when the prior covari-

ances Uk are invertible, so here we give the slightly more general expressions that allow for

one or more of the Uk to be singular.

For x | θ ∼ NR(θ,V ) and θ ∼ NR(0,U), we have

θ | x ∼ NR(µ
∗,U∗) (1)

in which

U∗ := U∗(U ,V ) = U(IR + V −1U)−1 (2)

µ∗ := µ∗(U ,V ,x) = U∗V −1x. (3)

For the mixture prior, the posterior distribution is

p(θj | xj ,π,U) =
K∑
k=1

π∗jkNR(θj ;µ
∗
jk,U

∗
jk) (4)

where U∗jk := U∗(Uk,Vj) and µ∗jk := µ∗(Uk,Vj ,xj), and

π∗jk :=
πkNR(xj ; 0,Uk + Vj)∑K

k′=1 πk′NR(xj ; 0,Uk′ + Vj)
. (5)

These expressions are the same as the expressions in Urbut et al. [2019] when all the Uk are

invertible.
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A.2 EM for weighted log-likelihoods

In this section we derive an “EM-like” algorithm for maximizing a weighted log-likelihood of

the form:

ϕ(Θ;w) :=
n∑

j=1

wj log pj(xj | Θ)

=
n∑

j=1

wj lj(Θ), (6)

where the wj are known (fixed) weights, the xj denote the independently observed data, and

Θ denotes the unknowns to be estimated. Note that here we do not make specific modeling

assumptions; in particular, the results are not specific to the EBMNM model.

We assume, as in usual applications of EM, that the likelihoods can be written using an

“augmented data” form; that is, pj(xj | Θ) =
∫
pj(xj , zj | Θ) dzj .

The following proposition gives an “EM-like” update that is guaranteed to increase (or

not decrease) the weighted log-likelihood, ϕ.

Proposition 1. Given the current value of Θ, denoted Θ(0), define a new value, Θ(1), by

applying the following steps:

1. E-step: For each j = 1, . . . , n, compute the conditional distribution of zj , pj(zj |

xj ,Θ
(0)).

2. M-step: Set Θ(1) = argmaxΘ
∑n

j=1wjEpj(zj |xj ,Θ(0))[log p(xj , zj | Θ)
]
.

Then ϕ(Θ(1);w) ≥ ϕ(Θ(0);w).

Note that when the weights wj are all 1, these steps are the standard E-step and M-step

in EM.
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Proof. Following Neal and Hinton [1998], we define

F (q1, . . . , qn; Θ) :=
n∑

j=1

wj
{
Eqj [log pj(xj , zj | Θ)] +H(qj)

}
, (7)

where qj is any distribution of zj and H(qj) = −Eqj [log qj(zj)] is the entropy of distribution

qj . Using Lemma 1, 2 of Neal and Hinton [1998], we have

q̂j(Θ) := argmaxqj F (q1, . . . , qn; Θ) = pj(zj | xj ,Θ), j = 1, . . . , n. (8)

F (q̂(Θ);Θ) =
n∑

j=1

wj lj(Θ) = ϕ(Θ;w), (9)

where we have introduced the notation q̂(Θ) as shorthand for q̂1(Θ), . . . , q̂n(Θ).

The function being maximized in the M-step differs from F (q̂(Θ(0)); Θ) only by terms

that do not depend on Θ, so the M-step can be written as

Θ(1) = argmaxΘ F (q̂(Θ(0)); Θ). (10)

Therefore,

ϕ(Θ(1);w) = F (q̂(Θ(1)),Θ(1)) ≥ F (q̂(Θ(0)),Θ(1)) ≥ F (q̂(Θ(0)),Θ(0)) = ϕ(Θ(0);w),

where the equalities are due to (9); the first inequality is due to the optimality of q̂(Θ(1))

from its definition, and the second inequality is due to the optimality of Θ(1) in (10). This

completes the proof.

A.3 Derivation of the EM algorithm for fitting the EBMNM model

Here we derive the general EM algorithm for EBMNM (Algorithm 1).
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First, we introduce a latent variable zj for each j = 1, . . . , n. Each zj is a binary vector

of length K indicating the component k from which xj arose. Following Neal and Hinton

[1998], we introduce the function F (q,U ,π, s),

F (q,U ,π, s) = Eq[log p(x, z;U ,π)−
∑K

k=1 ρ(Uk/sk)]− Eq[log q(z)] (11)

=
n∑

j=1

K∑
k=1

Eq
[
log(πk) + logNR(xj ; 0,Uk + Vj)

]
−

K∑
k=1

ρ(Uk/sk)− Eq[log q(z)],

where q is any distribution over z. Note that the only difference between (11) and the

function F in Neal and Hinton [1998] is a constant term with respect to q, the penalty∑K
k=1 ρ(Uk/sk). Therefore, we can use Lemma 1 and Lemma 2 in Neal and Hinton [1998],

which shows that the log-likelihood is related to F by

F (q̂,U ,π, s) = l(U ,π, s), (12)

where q̂ := argmaxq F (q,U ,π, s), and is the conditional distribution of z,

q̂(z) := argmaxq F (q,U ,π) = p(z | x,U ,π). (13)

In our case, F is related to the penalized log-likelihood,

F (q̂, s,U ,π) = l(U ,π)−
K∑
k=1

ρ(Uk/sk). (14)

Therefore, the maximum-likelihood estimates of s,π and the penalized maximum-likelihood

estimates of U can be obtained by maximizing F jointly over q, s,U ,π:

(Û , π̂, ŝ) := argmaxs,U ,π l(U ,π)−
∑K

k=1 ρ(Uk/sk)

= argmaxs,U ,π maxq F (q,U ,π, s).
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The standard EM algorithm can be thought of as iterating between optimizing over q

(the E-step) and optimizing over U ,π, s (the M-step). The E-step computes q̂. The expected

value of zjk under q̂ is

wjk := Eq̂[zjk] =
πkNR(xj ; 0,Uk + Vj)∑K

k′=1 πk′NR(xj ; 0,Uk′ + Vj)
. (15)

The part of the M-Step optimizing F over π is straightforward and given by

π̂k =
1

n

n∑
j=1

wjk, k = 1, . . . , K. (16)

Optimizing F over Uk and sk is described below.

A.4 Data transformation for homoskedastic case of EBMNM

When Vj = V , we can simplify the fitting procedure of EBMNM model by performing a

data transformation and then applying algorithms to the case of V = IR on transformed

data. Here we describe this approach in more details.

Let R be any matrix such that V = RRT (e.g., R could be the Cholesky decomposition

of V ). Since V is invertible, R is also invertible, so consider the transformed data x̃j :=

R−1xj . The marginal model (2.3) for the transformed data becomes

p(x̃j | π,U ,Vj) =
K∑
k=1

πkNR(x̃j ;0, Ũk + IR), (17)

where Ũk := R−1UkR
−T . Thus, we can estimate Uk by first estimating Ũk—by fitting the

EBMNM model to transformed data x̃j with V = IR, yielding estimates ˆ̃Uk say—and then
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reversing the transformation to obtain estimates Ûk for Uk,

Ûk = R ˆ̃UkR
T , k = 1, . . . , K. (18)

When taking this approach, any constraint on Uk (Uk ∈ P
+,k
R ) must be translated to an

equivalent corresponding constraint on Ũk (Ũk ∈ P̃
+,k
R say) when fitting the EBMNM model.

For example, a rank-1 constraint on Uk translates to a rank-1 constraint on Ũ .

Note that with this transformation, when a penalty function is included in the EBMNM

problem, the penalty is imposed on Ũk rather than on Uk. Specifically, it can be shown that

this transformation approach, instead of solving (2.9), solves

(π̂, Û , ŝ) := argmax
π∈SK ,Uk∈P

+,k
R

l(π,U)−min
s

K∑
k=1

ρ
(
R−1UkR

−T /sk
)
. (19)

When no penalty is included, clearly this does not alter the problem; i.e., (2.9) and (19)

are equivalent. With either the IW or NN penalty included, (2.9) and (19) differ; whereas

(2.9) encourages Uk/sk to be close to IR, (19) encourages Ũk/sk to be close to IR, and in

turn encourages Uk/sk to be close to V . Whether one or other is better is difficult to say

in general, and may be context-dependent. Indeed, the transformation approach ensures a

stronger version of the invariance property (2.7):

θ̂(Ax,AV AT ) = Aθ̂(x,V ) (20)

for any invertible matrix A. Further (19) has the advantage that it can be solved by our TED

approach when Vj = V ̸= IR, whereas (2.9) cannot. We therefore take the transformation

approach as the default approach in our software.

Note that, for the IW and NN penalties, the penalty term in (19) does not depend on
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the exact choice of matrix R in V = RRT . For example,

ρIW
λ (R−1UR−T ) =

λ

2

[
log detR−1UR−T + tr((R−1UR−T )−1)

]
=

λ

2

[
log detU + log detR−1R−T + tr(RTU−1R)

]
=

λ

2

[
log detUV −1 + tr(U−1V )

]
.

A.5 Algorithms for a special case of the EBMNM model when K = 1

In the M-step of Algorithm 1, we maximize the part of F that depends on Uk for each k,

which is (2.27):

max
U ∈P+,k

R , s> 0

ϕ(U ;wk)− ρ(U/s), (21)

where

ϕ(U ;w) :=
n∑

j=1

wj logNR(xj ;0,U + Vj).

We take an alternating optimization approach to solving (21) in which we alternate between

maximizing over U with fixed s, and maximizing over s with fixed U . We have three

algorithms to maximize over U in (21), which are detail in the following subsections. The

update for s is given in Section A.5.

Truncated eigenvalue decomposition

We derive TED algorithm in the case where Vj = IR. When V ̸= IR, we can simplify to

the special case of Vj = IR by performing a simple data transformation described in Section

A.4. When Vj = IR for all j, ϕ in (2.26) simplifies. Specifically, dropping terms that do not

depend on U , we have

ϕ(U ;w) = −w̄

2

{
log |U + I|+ tr[(U + I)−1Ŝ]

}
, (22)
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where I = IR, and Ŝ :=
∑n

j=1 w̃jxjx
T
j is the (weighted) sample covariance with renormal-

ized weights w̃j := wj/w̄, w̄ :=
∑n

j=1wj . Differentiating (22) with respect to U + I and

setting the derivative to zero yields the solution U = Ŝ − I. However, the matrix Ŝ − I is

not necessarily a covariance; that is, it may have one or more eigenvalues that are negative.

Intuitively, one might propose to create a valid covariance matrix by setting the negative

eigenvalues to zero. Indeed, this intuition is correct: setting the negative eigenvalues of Ŝ−I

to zero can be justified on the grounds that it maximizes (22) subject to the constraint that

U ∈ P+
R . This is stated more formally by the following result.

Result 1. Let ϕ(U ;w) be defined in (22), and let Ŝ = LDLT be the eigenvalue decompo-

sition of Ŝ, with D := diag(d1, . . . , dR). Then we have that

argmaxU ∈P+ ϕ(U ;w) = L(D − I)+L
T , (23)

where A+ denotes the matrix constructed from A by setting any negative elements of A to

zero.

Remark 1. It is straightforward to generalize this result to include an additional constraint

on the rank of U . Specifically, optimizing over U subject to the constraint that its rank is less

than R′ (where R′ ≤ R) can be achieved by first setting all negative eigenvalues to zero, then,

if needed, setting the smallest positive eigenvalues to zero until at least R − R′ eigenvalues

are zero.

With the addition of a penalty, ρIWλ (U) or ρNN
λ (U), the subproblem (2.27) no longer

has a closed-form solution. However, it can nonetheless be solved easily using numerical

methods, as explained in the following proposition.

Proposition 2. Let ρ(U) be a function of R×R matrix U that is separable in the eigenvalues

of its argument; that is, ρ(U) =
∑R

r=1 ρr(er) for some ρr(·), in which er denotes the rth
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eigenvalue of U . (This separability property is satisfied by both the IW and NN penalties.)

Then

argmaxU ∈P+ ϕ(U ;w)− ρ(U/s) = Ldiag(ê1, . . . , êR)L
T , (24)

where

êr := argmax
er ≥ 0

−w̄

2

{
log(er + 1) +

dr
er + 1

}
− ρr(er/s). (25)

Proof. The proof relies on the following result, which is a corollary to the Von Neumann–Fan

trace inequality [Mirsky, 1975], and is also used by Chi and Lange [2014]:

Result 2. For Hermitian n × n positive semidefinite complex matrices A,B where the

eigenvalues are sorted in decreasing order, a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn,

respectively, we have
n∑

i=1

aibn−i+1 ≤ tr(AB) ≤
n∑

i=1

aibi, (26)

with equality if and only if A and B share singular vectors.

We use Result 2 to prove the following lemma:

Lemma 1. Define f(Q,E;w) := ϕ(QEQT ;w) where ϕ denotes the function defined in

(22), and QEQT is the eigenvalue decomposition of U , so Q is an orthonormal matrix, and

E is a diagonal matrix with non-negative entries e1 ≥ e2 ≥ . . . eR ≥ 0 (so QEQT ∈ P+
R ).

Let LDLT be the eigenvalue decomposition of the matrix S appearing in ϕ. Then

L = argmax
Q

f(Q,E;w), (27)

and

max
Q

f(Q,E;w) = −w̄

2

R∑
r=1

[
log(er + 1) +

dr
er + 1

]
. (28)
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Proof. From the definition,

f(Q,E;w) = −w̄

2

(
log |QEQT + IR|+ tr((QEQT + IR)

−1S)
)

(29)

= −w̄

2

(
log |E + IR|+ tr(Q(E + IR)

−1QTS)
)

(30)

so

max
Q

f(Q,E;w) = −w̄

2

[∑
r

log(er + 1) + min
Q

tr(Q(E + IR)
−1QTS)

]
. (31)

From (26) (left inequality), we have:

tr(Q(E + IR)
−1QTS) ≥

R∑
i=1

di
ei + 1

, (32)

with equality if and only if Q = L, and the result follows.

Proposition 2 then follows by parameterizing U = QEQT and optimizing over U by

optimizing over Q,E.

Remark 2. For separable penalties, the high-dimensional optimization problem (2.27) re-

duces to solving several 1-d optimization problems of the form (25). These 1-d optimization

problems can be solved very efficiently using standard numerical algorithms. Result 1 follows

as a simple corollary, by setting the penalty to zero and noting that the maximum of (25) is

then êr = max{0, dr − 1}. Note that Tipping and Bishop [1999] proved a result similar to

Result 1.

Extreme Deconvolution

The ED algorithm for solving (2.27) is due to Bovy et al. [2011] and is indeed an EM

algorithm for solving weighted log-likelihood based on the data augmentation representation
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(2.16). In this case, the weighted “complete data” log-likelihood is

ϕED(U ,Θ;w) =
n∑

j=1

wj log p(xj ,θj | U ,Vj). (33)

Following Proposition 1, the subproblem (2.27) can be solved by the following EM steps:

• E-step: compute the posterior mean and covariance of θj given current estimate of U :

bj = U(U + Vj)
−1xj (34)

Bj = U −U(U + Vj)
−1U . (35)

• M-step:

Unew ← argmaxU EΘ|X
[
ϕED(U ,Θ;w)

]
− ρ(U/s;λ). (36)

Without a penalty, the ED update (36) has the following closed-form solution,

Unew =
n∑

j=1

w̃j(Bj + bjb
T
j ), (37)

where w̃j are the normalized weights, w̃j := wj/w̄, w̄ :=
∑n

j=1wj . With the IW penalty,

the ED update also has a closed form, which is:

Unew =

∑n
j=1wj(Bj + bjb

T
j ) + λsIR∑n

j=1wj + λ
. (38)

This expression is derived below. Under the NN penalty, the ED updates are not closed

form, so we have not implemented them.

For simplicity, we have presented ED as solving the subproblem (2.27), which would in-

volve iterating the updates (37) until they have converged to a stationary point (within some

specified convergence tolerance). Practically speaking, however, iterating the ED updates
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typically suffer from “diminishing returns” in the sense that repeated updates make smaller

and smaller improvements to the likelihood. Therefore, it is often more efficient to not try

to solve the subproblem accurately, and perform only a few updates. In our implementation,

we run ED for one iteration in each M-step of Algorithm 1. The same approach was adopted

in Bovy et al. [2011].

Derivation for ED algorithm with IW penalty The M-step involves maximizing,

E
[
ϕED(U ,Θ,w

]
− ρIW (U/s) =

n∑
j=1

wj
(
− 1

2
log |U | − 1

2
tr[(B + bjb

T
j )U

−1]
)

− λ

2
[log |U | −R log s+ tr(sU−1)] + constant, (39)

where B and bj are defined in (2.19) and (34). Denote the part of (39) that depends on U

as f(U). We take the (matrix) derivative of f(U) with respect to U−1 and find the U−1

that sets the derivative to 0.

f(U)

∂U−1
=

∑n
j wj + λ

2
U − 1

2

( n∑
j=1

wj(Bj + bjb
T
j ) + sλI

)
= 0. (40)

This gives the closed-form solution

Unew =

∑n
j=1wj(Bj + bjb

T
j ) + λsIR∑n

j=1wj + λ
. (41)

Subspace-preserving property of ED Although the ED update is seemingly very gen-

eral, it has an important limitation: the ED updates (37) have the property that they are

“subspace preserving”. While this limitation is not a big issue for unconstrained matrices, it

makes ED poorly suited for estimating low-rank matrices, and in particular matrices with

the rank-1 constraint; the ED updates (without penalty) will leave U unchanged aside from

a change in scale. As far as we are aware, we are the first to report this limitation of ED.
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Fortunately, there is another iterative approach which is much better suited to updating

covariances U with constraints on the rank of U . This is described in the next section.

A feature of the ED algorithm is that, if U is initialized to a rank-1 matrix then the ED

update does not change U (or only by a multiplicative constant). Thus the ED algorithm

is not suited to estimating rank-1 matrices. More generally, the ED update does not change

the column space of the matrix being updated.

This behavior can be seen directly from the form of the update (37), which can be written

as Unew = UA, where

A :=
n∑

j=1

w̃j
[
(U + Vj)

−1xjx
T
j (U + Vj)

−1U + I − (U + Vj)
−1U

]
. (42)

As a result, col(Unew) = col(UA) ⊆ col(U ). The column space of U is defined as

col(U) = {y ∈ RR : y = Ux,x ∈ RR}. (43)

If y′ ∈ col(UA), we can find some x such that y′ = UAx = Ux∗, where x∗ = Ax.

Therefore col(UA) ⊆ col(U).

Factor analysis

This last approach is motivated by our interest in fitting the EBMNM model with the

restriction that some covariance matrices Uk are rank-1. This constraint was also used in

Urbut et al. [2019], but they used a heuristic approach to estimate these rank-1 matrices.

To impose the rank-1 constraint, we reparameterize the covariance U as U = uuT , where

u ∈ RR. With this parameterization, the EBMNM subproblem becomes

xj | u,Vj ∼ NR(0,uu
T + Vj). (44)
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This model admits the augmented representation in (2.20). The weighted complete data

log-likelihood in this case is:

ϕFA(u,a;w) =
n∑

j=1

wj log p(xj , aj | u,Vj). (45)

Following Proposition 1, the subproblem (2.27) can be solved by iteratively maximizing an

expected (weighted) complete data log-likelihood,

unew = argmaxuEa|X
[
ϕFA(u, a;w)

]
, (46)

in which the expectations are taken with respect to the posterior under model (2.20) at the

current estimate of u. (Recall, there is no penalty term because the rank-1 constraint is

instead of a penalty.) The EM steps are the following:

1. E-step: Compute the posterior mean and variance of aj , which are

µj = σ2ju
TV −1j xj (47)

σ2j = 1/(1 + uTV −1j u). (48)

2. M-step: Maximize E[ϕFA(u,a;w)] with respect to u, which has the closed-form solu-

tion

unew =

( n∑
j=1

wj(µ
2
j + σ2j )V

−1
j

)−1( n∑
j=1

wjµjV
−1
j xj

)
. (49)

Updating the scaling parameter

In the M-step of Algorithm 1, we update s by maximizing the part that depends on s,

snew = argmax
s> 0

−ρ(U/s). (50)
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For both the IW and NN penalties, the updates have closed-form solutions. For the IW

penalty, the update is

snew =
R

tr(U−1)
. (51)

For the NN penalty, the update is

snew =

√
tr(U)

tr(U−1)
. (52)

Proof. For the IW penalty, based on (2.10), we have

ρIWλ (U/s) =
λ

2

[
log |U/s|+ tr

(
(U/s)−1

)]
=

λ

2

[ R∑
r=1

log er −R log s+ str(U−1)
]
. (53)

Taking the first derivative of ρIWλ (U/s) with respect to s and set it to zero, we obtain (51).

For the NN penalty, based on (2.12), we have

ρNNλ (U/s) =
λ

2

(
0.5∥U/s∥∗ + 0.5∥(U/s)−1∥∗

)
=

λ

2

(0.5
s

tr(U) + 0.5str(U−1)
)
. (54)

Taking the first derivative of ρNNλ (U/s) with respect to s and setting it to zero, and requiring

s > 0, we obtain (52).

Updating U with a scaling constraint

For the scaling constraint, in which U = cU0 such that U0 is specified and c > 0 is the scalar

parameter to be estimated, it is straightforward to solve the subproblem (2.25) by standard

numerical methods for 1-d optimization.
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A.6 Computational complexity of different algorithms

Unconstrained Scaled Rank-1
TED O(R3 + nR2) – O(R3 + nR2)

FA O(R3 + nR2) O(npR) O(nR)

ED O(R3 + nR2) – –

Table A.1: Computational complexity for homoskedastic case (when Vj = V ). Per-iteration
computational complexity of different algorithms for solving the subproblem when n is much
larger than R. p is the rank of the canonical covariance matrix, p ≤ R.

Unconstrained Scaled Rank-1
ED O(nR3) – –
FA – O(npR2) O(R3 + nR2)

Table A.2: Computational complexity for heteroskedastic case (when Vj varies). Per-
iteration computational complexity of different algorithms for solving the subproblem when
n is much larger than R, in the case where Vj = I and Vj varies. p is the rank of the canoni-
cal covariance matrix, p ≤ R. Note that TED algorithm doesn’t work for the heteroskedastic
case.

A.7 Proof that changing α is equivalent to changing λ with scale invariance

in the nuclear norm penalty

Let’s compute ŝ using the original form of the NN penalty from Chi and Lange [2014]:

ŝ = argmin
s> 0

ρNNλ (U/s;α)

= argmin
s>0

λ

2

[α
s
∥U∥∗ + (1− α)s∥U−1∥∗

]
. (55)

This results in

ŝ =

√
αtr(U )

(1− α)tr(U−1)
. (56)
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This computation is similar to 52. Plugging ŝ into ρNNλ (U/s;α), we can see the term that

includes α can be absorbed into λ:

ρNNλ (U/ŝ;α) = −λ
√
(1− α)α

√
tr(U)tr(U−1). (57)

A.8 Power and FSR

Given an effect estimate θ̂jr and lfsrjr for each observation j = 1, . . . , n and dimension

r = 1, . . . , R, we define S as the set of significant effects at threshold t ≥ 0, CS as the set

of “correctly signed” results, T as the set of true nonzero effects, and N the set of true null

(zero) effects:

S = {j, r : lfsrjr ≤ t} (58)

CS = {j, r : θ̂jr × θjr > 0} (59)

N = {j, r : θjr = 0} (60)

T = {j, r : θjr ̸= 0}. (61)

Then we define true positive rate (power) and false sign rate (FSR) at lfsr threshold t as

TPR =
|CS ∩ S|
|T|

(62)

FSR =
|S| − |CS ∩ S|

|S|
. (63)
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Figure A.1: Data examples for comparing the convergence between TED and ED. Each row
represents one data example. We ran both algorithms for 100,000 iterations after running
ED for 20 iterations initially.
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A.9 Supplementary Figures
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Figure A.2: Calibration of FSR for hybrid scenario. Other simulation parameters are as in
Figure 2.4 in the main text. The dashed, black line represents the empirical FSR equals to
nominal FSR.
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Figure A.3: Calibration of FSR where true covariances are all rank-1 matrices. Other sim-
ulation parameters are the same as Figure 2.5 in the main text. The dashed, black line
represents empirical FSR equals the nominal FSR.

152



ted.nu ted.iw ed.iw ted ed ted.rank1

10
20

30
40

50

Number of components picked (weight > 0.01)

Figure A.4: The number of “important” components, defined as the components k with
mixture weight πk > 0.01. (The true K was 10.) Boxplots are based on 100 data replicates.
For each simulated data set, n = 1000 and R = 50.

B CoxPH-SuSiE

B.1 Approximate Bayes factor calculation

To compute BFL, we need to compute the integral in the numerator I =
∫
L̂p(b)p(b)db.

I =
exp{lp(b̂)}√

2πσ0

∫
exp{−(b− b̂)2

2s2
− b2

2σ20
}db (64)

=
Lp(b̂)√
2πσ0

exp{−b̂2/2s2}
∫

exp{−( 1

2s2
− 1

2σ20
)b2 +

b̂b

s2
}db. (65)
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Recognize the integrand is a Gaussian kernel with variance σ21 = 1
1/s2+1/σ20

. Then,

I = Lp(b̂) exp{−
b̂2

2s2
}σ1
σ0

exp{
b̂2σ21
2s4
} (66)

=

√
s2

σ20 + s2
exp

{z2
2

σ20
σ20 + s2

}
exp{−b̂2/2s2}Lp(b̂). (67)

B.2 An EM algorithm to estimate prior variance

With the data augmentation, the complete data likelihood is:

L(σ20;X,y,γ, b) = p(y,γ, b|X, σ20) = p(y|X,γ, b)p(b)p(γ) (68)

=

p∏
j=1

[
p(y|xj , b)p(γj = 1)

]I(γj=1)
p(b;σ20). (69)

The complete log-likelihood is:

l(σ20) =

p∑
j=1

I(γj = 1)

[
log p(y|xj , b) + log πj

]
+ log p(b;σ20) (70)

=

p∑
j=1

I(γj = 1)

[
log p(y|xj , b) + log πj

]
− 1

2
log σ20 −

b2

2σ20
+ constant. (71)

The E-step takes the expectation of l(σ20) w.r.t. the posterior of γ and the approximate

posterior of b|γ,

E(l(σ20)) =
p∑

j=1

αj

[
Eb|γj=1

(
log p(y|xj , b)

)
+ log πj

]
− 1

2
log σ20 −

∑p
j=1 αj(µ

2
1j + σ21j)

2σ20
+ constant.

(72)
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The M-step maximizes E(l(σ20)) w.r.t. σ20:

∂E(l(σ20))
∂σ20

= − 1

2σ20
+

∑p
j=1 αj(µ

2
1j + σ21j)

2(σ20)
2

→ 0 (73)

σ20 ←
p∑

j=1

αj(µ
2
1j + σ21j). (74)

B.3 Notes on simulating survival data

For individual i who has:

Ti ∼ exp(λsi ) (75)

Ci ∼ exp(λc), (76)

the probability p(Ti > Ci) is λc/(λc + λsi ).

Proof. For an arbitrary individual,

p(T > C) =

∫ ∞
0

∫ ts

0
λs exp{−λsts}λc exp{−λctc}dtcdts (77)

=

∫ ∞
0

λs exp{−λsts}
(
1− exp{−λcts}

)
dts (78)

=

∫ ∞
0

λs exp{−λsts}dts −
∫ ∞
0

λs exp{−λsts − λcts}dts (79)

= 1− λs

λs + λc

∫ ∞
0

(λs + λc) exp{−(λs + λc)ts}dts (80)

=
λc

λs + λc
. (81)

To generate λc for a corresponding censor level r, we want:

r =
1

n
E(

n∑
i

1Ci<Ti) =
1

n

n∑
i=1

P (Ci < Ti) =
1

n

n∑
i=1

λc

λsi + λc
. (82)
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Figure C.5: Directed Acyclic Graph (DAG) of genetic nurture path. G is the whole genotype
vector of an individual under consideration and Y is his/her phenotype of interest. Gpa is the
genotype of this individual’s parents and Z are the ancestry information. Y pa are parental
phenotypes that can be influential to this individual’s phenotype Y . U is a set of unobserved
non-heritable confounders.

We need to find a λc that solves (82), which is a little complicated. Instead, we use (3.74)

for generating λc. Although it’s not equivalent to what we really want, it simplifies the

simulation procedure greatly.

C Derivations and proofs for Chapter 4

C.1 Discussion on models for sibling data

In this section, we prove the correctness of model (6) for sibling data in Table 4.1. We start

from the Directed Acyclic Graph (DAG) of genetic nurture path (see Figure C.5) and the

corresponding structural equation. We will also show the equivalence between using a latent

familial effect fj and using the measurable Gsibs
j .

The structural equation of the DAG in Figure C.5 is:

Y = f(G, Y pa, Z, U, ϵ), (83)
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where ϵ represents the error term. For sibling data, let’s consider one family. Let Y (i) denote

the measure of the phenotype Y on individual i; G(i)
j be the genotype j of individual i in

the family, ϵ(i)kj be the residual term of genotype j for the individual i when we project onto

k individuals.

Lemma 2. Let G := (G
(1)
j , · · · , G(k)

j ) be the vector of children’s SNP j in a family. Assume

1. The DAG in Figure C.5 is correct.

2. Conditioning on Gpa, G(i)
j are iid across i.

Then

1. (f(Z,U, ϵi0 , Y
pa, G

(i0)
j ), Gpa, G

(i)
j ) has the same distribution, ∀i ̸= i0.

2. Define

γ = argmin
γ∈Rk

Var

f(Z,U, ϵi0 , Y
pa, G

(i0)
j )−

k∑
i=1

γiG
(i)
j

 ,

then for all i ̸= i0, we have γi = γ for some constant γ ∈ R

Using the result from Lemma 2, if we project Y onto k siblings in the family, we obtain

model (6) in Table 4.1:

Y (1) = γ̃1jG
(1)
j + γ̃2j

k∑
i=2

G
(i)
j + ϵ

(1)
kj = (γ̃1j − γ̃2j)G

(1)
j + γ̃2j

k∑
i=1

G
(i)
j + ϵ

(1)
kj

Y (2) = γ̃1jG
(2)
j + γ̃2j

∑
i̸=2

G
(i)
j + ϵ

(2)
kj = (γ̃1j − γ̃2j)G

(2)
j + γ̃2j

k∑
i=1

G
(i)
j + ϵ

(2)
kj

...

(84)

Then we can define fj = γ̃2j
∑k

i=1G
(i)
j . Therefore, we obtain model (5) in Table 4.1 where

fj usually represents some arbitrary familial effect:

Y (i) = (γ̃1j − γ̃2j)G
(i)
j + fj + ϵ

(i)
kj , i = 1, 2, . . . , k. (85)
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C.2 The joint asymptotic distribution of (τ̂ − τ ∗, α̂1 − α̂′1)

Let b̂j solves the estimating equations of the full model (4.2) on internal data,

n∑
i=1

sij(bj) :=
n∑

i=1

(yi − µij)


1

Gij

Fij

 =
n∑

i=1

(yi − g−1(ηij))


1

Gij

Fij

 = 0. (86)

Let α̂j and α̂′j solve the estimating equations of the reduced model (4.4) on internal and

external data,

∑
i

s̃ij(αj) :=
∑
i

(yi − µ̃ij)

 1

Gij

 = 0. (87)

Following Chen and Chen [2000], we present the following lemma which gives the asym-

pototic joint distribution of (b̂, α̂, α̂′) (index j omitted here). The result is derived directly

using Taylor expansion and the central limit theorem.

Lemma 3. Let b∗ be the true value of b, α∗ be the value minimize the Kullback Leibler

divergence between model (4.2) and model (4.4). (b̂, α̂′, α̂) is consistent for (b∗,α∗,α∗) and

the joint distribution of (b̂, α̂′, α̂) is asymptotically normal with mean 0 and variance given

by the follows:

√
n


b̂− b∗

α̂′ −α∗

α̂−α∗

→ N
0,


D−11 C11D

−1
1 D−11 C12D

−1
2 ρD−11 C12D

−1
2

D−12 C21D
−1
1 D−12 C22D

−1
2 ρD−12 C22D

−1
2

ρD−12 C21D
−1
1 ρD−12 C22D

−1
2

n
ND−12 C22D

−1
2


 ≡ N (0,V ),

(88)
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where

D1 ≡ E
(
∂s(b∗)
∂b

)
, (89)

D2 ≡ E
(
∂s̃(α∗)
∂α

)
, (90)

C ≡ E
[{

s(b∗)′, s̃(α∗)′
}′{

s(b∗)′, s̃(α∗)′
}]

. (91)

And C11,C12 and C22 denote the submatrices of C, where

C11 ≡ E
{
s (b∗) s′ (b∗)

}
C12 ≡ E

{
s (b∗) s̃′ (α∗)

}
C22 ≡ E

{
s̃ (α∗) s̃′ (α∗)

}
.

n and N denote the sample size of internal and external data. ρ denotes the sample over-

lapping ratio between internal and external data.

To find the asymptotic distribution of (τ̂ − τ∗, α̂1 − α̂′1), we multiply a suitable matrix

A to (b̂− b∗, α̂′ −α∗, α̂−α∗). Therefore,

√
n

 τ̂ − τ∗

α̂′1 − α̂1

→ N

0

0

 ,AV AT

 ≡ N

0

0

 ,

v11 v12

v21 v22


 . (92)
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C.3 Covariance estimation in the asymptotic normal distribution

The estimated v̂11, v̂12 and v̂22 are obtained by estimating D1,D2,C11,C12,C22 using sam-

ple quantities, which are as follows when observations are i.i.d. in the internal data:

D̂1 =
1

n

n∑
i=1

∂si(b̂)

∂b
(93)

D̂2 =
1

n

n∑
i=1

∂s̃i(α̂
′)

∂α
(94)

Ĉ11 =
1

n

n∑
i=1

si(b̂)si(b̂)
′ (95)

Ĉ12 =
1

n

n∑
i=1

si(b̂)s̃i(α̂
′)′ (96)

Ĉ22 =
1

n

n∑
i=1

s̃i(α̂
′)s̃i(α̂

′)′. (97)

This is suitable for scenario (1) through (4) in Table 4.1. For sibling data in scenario (5)

and (6), estimating C11 becomes more challenging due to the correlation between siblings

within families. Let Hk = {hk1, hk2, . . . , hknk} be the set of families with k siblings in the

data set for k = 2, . . . , K. Then

1

n
Var

(
n∑

i=1

si(b
∗)

)
= Var

 K∑
k=2

nk
n

 1

nk

nk∑
r=1

∑
i∈hkr

si(b
∗)

 =:
K∑
k=2

nk
n
Vk (98)

Due to the independence across families, Vk can be estimated by

V̂k =
1

nk

nk∑
r=1

∑
i∈hkr

si(b̂)

∑
i∈hkr

si(b̂)

′ . (99)
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C.4 Derivation for theoretical variance reduction in trio data

We derive the theoretical variance reduction under linear regression model in scenario (1).

We assume the correct model is:

Y = b0 + b1T + b2NT + ϵ,

where (T,NT ) ⊥⊥ ϵ, ϵ ∼ N (0, σ2). In addition, we assume T and NT have zero expectation,

unit variance and correlation r. Let X := (1, T,NT )⊤ be the covariates.

Consider the reduced(misspecified) model:

Y = α0 + α1T + ϵ′.

Let X̃ := (1, T )⊤ be the covariates. The estimating equation under the reduced model is:

s̃(α) = (Y − α0 − α1T )

1

T

 = (Y − X̃⊤α)X̃ (100)

Then

E(X,Y ) [s̃(α)] = 0

=⇒ E(X,Y )

[
(Y − X̃Tα)X̃

]
= 0

=⇒ EX

[
EY |X(Y − X̃Tα)X̃

]
= 0

=⇒ EX [X̃(XT b− X̃Tα)] = 0

From the first equation, we can get α0 = b0 and α1 = b1 + b2r. It follows that

Var(ϵ′) = Var((b1 − α1)T + b2NT + ϵ) = Var(−rb2T + b2NT + ϵ) = σ2 + (1− r2)b22
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.

Finding D and C

The score equation for the correct model is given by

si(α) = (Yi − X̃T
i α)X̃i, si(b) = (Yi −XT

i b)Xi

Therefore

• D1 = E
[
∂s(b)
∂b

]
= E

[
XT
i Xi

]
= −ΣX

• D2 = E
[
∂s̃(α)
∂α

]
= E

[
X̃T
i X̃i

]
= −Σ

X̃

• C11 = E
[
s(b)s(b)T

]
= E

[
(Yi −XT

i b)
2XiX

⊤
i

]
/σ4 = σ2ΣX

• C22 = E
[
s(α)s(α)T

]
= E

[
(Yi − X̃T

i α)2X̃iX̃
⊤
i

]
/(σ′)4 = (σ′)2Σ

X̃

• C12 = E
[
s(b)s(b)T

]
= E

[
(Yi −XT

i b)(Yi −XT
i α)XiX̃

⊤
i

]
= σ2Σ

X,X̃
,

where

ΣX =


0 0 0

0 1 r

0 r 1

 , Σ
X̃

=

0 0

0 1

 , Σ
X,X̃

=


0 0

0 1

0 r


Computation of variation reduction

From previous results, we know that

√
n


b̂− b

α̂−α

α̂′ −α

→ N


0

0

0

 ,


D−11 C11D

−1
1 D−11 C12D

−1
2 ρD−11 C12D

−1
2

D−12 C21D
−1
1 D−12 C22D

−1
2 ρD−12 C22D

−1
2

ρD−12 C21D
−1
1 ρD−12 C22D

−1
2

n
ND−12 C22D

−1
2




≡ N (0,V ) ,
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where n is the sample size of the internal data, N is the sample size of the external data,

and ρ is the sample overlap ratio between internal data and external data.

Substituting the values of D and C, we get

V =



σ2 0 0 σ2 0 ρσ2 0

0 σ2

1−r2
−rσ2
1−r2 0 σ2 0 ρσ2

0 −rσ2
1−r2

σ2

1−r2 0 0 0 0

σ2 0 0 (σ′)2 0 ρ(σ′)2 0

0 σ2 0 0 (σ′)2 0 ρ(σ′)2

ρσ2 0 0 ρ(σ′)2 0 n
N (σ′)2 0

0 ρσ2 0 0 ρ(σ′)2 0 n
N (σ′)2


By simple linear algebra we have

√
n

 b̂1 − b̂2

α̂′1 − α̂1

→ N

0

0

 ,

v11 v12

v21 v22


 = N


0

0

 ,

 2σ2

1−r σ2(1− ρ)

σ2(1− ρ) (σ′)2
(
1 + n

N − 2ρ
)



Thus, using (4.7) , the variance reduction is given by

VR =
v212

v11v22
=

σ2(1− ρ)2(1− r)

2(σ′)2(1 + n
N − 2ρ)

=
σ2(1− ρ)2(1− r)

2
(
σ2 + b22(1− r2)

) (
1 + n

N − 2ρ
) .

When ρ = 0, we get the equation in the main text.
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