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Abstract

Biological Data comes in varied forms and the scale of the data is typically large, which

often necessitates distinct modeling frameworks and tools to process, analyze and visually

summarize the data. An overarching theme of this doctoral thesis is to suggest such novel

model based visualization tools for different biological problems.

The second chapter of this thesis extends the concept of a mixed membership model,

popularly known as ADMIXTURE model in population genetics and topic model in Nat-

ural Language Processing (NLP), to the context of RNA-sequencing read expression data

in genetics. Applied to data from the GTEx project on 53 human tissues, this approach

highlights similarities among biologically-related tissues and identifies distinctively-expressed

genes that recapitulate known biology. Applied to single-cell expression data from mouse

preimplantation embryos, this approach highlights both discrete and continuous variation

through early embryonic development stages, and identifies genes involved in a variety of

relevant processesfrom germ cell development.

The third chapter extends similar mixed membership models to analyzing DNA dam-

age patterns in ancient DNA (aDNA) samples, and explore and jointly summarize multiple

aDNA samples together with modern samples. Applied to a combined data of modern and

ancient individuals from multiple studies, this approach clearly distinguished moderns and

ancients irrespective of DNA extraction, lab and sequencing protocols. Additionally. we

found that the grades of membership from the fitted mixed membership models can be re-

flective of relative levels of contamination in the data.

The visual summary of DNA damage patterns, depicted above, includes a version of
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logo plot that highlights enrichment and depletion of damage features with respect to a

background level of mismatch features computed from modern individuals. We call this

representation the Enrichment Depletion Logo (EDLogo) plot and present a comprehensive

overview of this logo plot in the fourth chapter. We also propose an extension of typically

character driven logo plots to string based logos.

In the fifth chapter, we propose an adaptive method for shrinking correlation matrices

that leads to a parsimonious representation of the underlying association structure between

variables. This method is flexible in handling data matrices with missing observations and

accounts for the differences in the number of samples with non-missing observations for a

pair of variables in a model based way. Even with no missing data, under small n, large p

settings, this method outperforms other popular approaches to correlation shrinkage and is

flexible enough to extend to other correlation-like quantities such as the word-word cosine

similarity values from word2vec models in Natural Language Processing (NLP).
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Chapter 1

Introduction

1.1 Preface

Early on in my tenure as a graduate student, I was showing my advisor, Matthew Stephens,

a paper draft I had written. The draft was about 30 pages long, with 15 figures. Upon

glancing over it, Matthew quipped -

Can you summarize everything you did here into a single figure?

.

This basic idea – summarizing a seemingly complex data problem into a single visualiza-

tion that encompasses all major aspects of the analysis and the data - eventually turned out

to be the overarching theme for of all my research topics. My limited experience of working

at the interface of statistics and biology has made me realize that visualization is the easiest

medium to connect with and start a dialogue with people from different domains. Much

of my PhD research is an attempt to mix statistical methods with careful visualization of

the results, that will hopefully appeal to biologists, archaeologists or ecologists, among others.

Biological data comes in varied forms, which is why it is an exciting field for a compu-

tational person to work in. These data often necessitate development of new methods and

tools for analysis and subsequent visualization. Also given the fast moving nature of the

field and the scale of the data getting bigger with every passing day, there is growing need to

make the methods scalable to large data and to make them available as open source software

for fast reproducibility.
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1.2 Overview

The four chapters of this thesis each focus on developing modeling framework to visually

summarize different types of biological data. Each of these methods is also available as open

source software packages, together with codes to reproduce the figures in this thesis.

1.2.1 Chapter 2

Chapter 2 extends the concept of a mixed membership model or a Grade of Membership

model (GoM) [34], popularly known as ADMIXTURE model in population genetics [89]

and topic model in Natural Language Processing [15], to the context of RNA-seq expression

data. Bulk RNA-seq data as in Gentotype Tissue Expression (GTEx) Project [19] reports

the amount of mRNA (which can be considered as a measure of protein created) transcribed

from the protein coding genes (called mRNA expression in biology jargon) for a particular

sample of a tissue. GTEx in fact has mRNA expression data across all protein coding genes

for 8555 such tissue samples spanning across 53 different tissues.

Each tissue sample (say a Blood sample) may comprise of cells of different cell types (say

RBC, WBC, platelets) and these cell types are present in varying proportions in the sample

under consideration. The main idea of this chapter is to estimate clusters as a potential

analog to cell types, that represent a distinct mRNA expression profile and also estimate

the proportional representation of these clusters in each tissue sample. We observe that this

method indeed identifies biological subgroups driven by marker genes for those subgroups,

and also allows for a sparse representation of the tissue samples by the clusters. This method

can also be flexibly applied to single cell level data as well, where it can identify latent cell

states and the how these cell states contribute to determining the mRNA expression profile

for the given cell. For more details about the method and its application in RNA-seq context,

see Chapter 2.
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1.2.2 Chapter 3

In Chapter 3, we extend the GoM model to visually summarize DNA damage patterns in

ancient DNA samples. A major issue in processing ancient DNA (aDNA) data is to control

for contamination from modern human DNA. Fortunately, aDNA contains unique signatures

that can be used to distinguish it from modern DNA. These signatures are left by DNA-

damaging processes that accumulate over time. The predominant signatures of damage are

a high frequency of cytosine to thymine substitutions (C → T ) at the ends of fragments,

and elevated rates of purines (A & G) before the 5’ strand-breaks. To assess DNA damage,

a common QC procedure is to plot for each sample, the C → T mismatch rate along the

read and the composition of bases before the 5’ strand-breaks. Though simple and useful,

this procedure has several limitations.

We propose a modeling framework based on the GoM model where each sample has a

grade of membership in each of the K different damage profiles that are estimated from the

data. This has several advantages over existing approaches. Our method flexibly learns the

important features, and produces a single concise visual summary of the data. Additionally,

through the grades of membership, this approach quantifies the relative degrees of exoge-

nous modern contamination. We applied this method to a combined data-set comprised of

ancient samples from several aDNA studies and modern individuals from the 1000 Genomes

Project [1]. It clearly distinguished modern and ancient individuals irrespective of DNA

extraction, lab and sequencing protocols. Additionally. we found that the estimated grades

of membership accurately reflected relative levels of contamination in the data.

1.2.3 Chapter 4

The work presented in Chapter 4 is a spin-off of the DNA damage work in Chapter 3. To

effectively represent the cluster from the GoM model fit on the DNA damage data in Chapter
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3, we realized that a logo type plot [8, 109] would be the perfect candidate. However there

were two primary concerns regarding using logo plots for this problem. Firstly, we needed

to present not just letters - say A, C, G and T - as standard logo plotting softwares do,

but also strings such as C → T, T → A etc to denote mismatches. Secondly, we needed

to highlight both enrichment and depletion of features in each cluster with respect to a

known modern background for the benefit of comparison. The standard logo plots are more

biased in their representation of enrichment of symbols than depletion. We came up with a

visualization package called Logolas that not only has the flexibility to plot string logos, like

the mismatches, but also highlights both enrichment and depletion of symbols. Chapter 4

gives a detailed overview of how these logo plots were computed and how it can be used for a

more parsimonious representation of conserved patterns of bases/amino acids in an aligned

sequence of DNA, RNA or proteins.

1.2.4 Chapter 5

In Chapter 5, we propose an adaptive strategy to shrink correlation matrices from a data

matrix with potentially large scale missing observations. Correlation shrinkage is an exten-

sively studied field in statistics. A large proportion of these studies are focused on efficient

estimation under small n, large p settings. But not many of these methods can effectively

handle missing observations. Our method, built on the adaptive shrinkage (ash) framework

proposed in [119] is not only competitive with other shrinkage approaches in small n, large p

settings, but its main advantage is to produce visually parsimonious representation of corre-

lation structure in an adaptive way for data matrices with high proportion of missing data.

As an example application, CorShrink is applied to the donor by tissue expression data

matrix for a gene in the Genotype Tissue Expression (GTEx) project [19], where the data

contains large scale missing observations owing to each donor contributing only a few tissues.

The estimated correlation matrix using CorShrink is found to be less visually cluttered and
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more interpretable than the corresponding pairwise sample correlation matrix.
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Chapter 2

CountClust : Clustering and visualization of structure in RNA-seq

data using a Grade of Membership Model

(with C.J. Hsiao and M. Stephens)

2.1 Introduction

Ever since large-scale gene expression measurements have been possible, clustering – of both

genes and samples – has played a major role in their analysis [5, 32, 47]. For example,

clustering of genes can identify genes that are working together or are co-regulated, and

clustering of samples is useful for quality control as well as identifying biologically-distinct

subgroups. A wide range of clustering methods have therefore been employed in this context,

including distance-based hierarchical clustering, k-means clustering, and self-organizing maps

(SOMs); see for example [27, 58] for reviews.

Here we focus on cluster analysis of samples, rather than clustering of genes (although

our methods do highlight sets of genes that distinguish each cluster). Traditional cluster-

ing methods for this problem attempt to partition samples into distinct groups that show

“similar” expression patterns. While partitioning samples in this way has intuitive appeal,

it seems likely that the structure of a typical gene expression data set will be too complex

to be fully captured by such a partitioning. Motivated by this, here we analyse expression

data using grade of membership (GoM) models [34], which generalize clustering models to

allow each sample to have partial membership in multiple clusters. That is, they allow that

each sample has a proportion, or “grade” of membership in each cluster. Such models are

widely used in population genetics to model admixture, where individuals can have ancestry

from multiple populations [89], and in document clustering [14, 15] where each document
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can have membership in multiple topics. In these fields GoM models are often known as

“admixture models”, and “topic models” or “Latent Dirichlet Allocation” [15]. GoM models

have also recently been applied to detect mutation signatures in cancer samples [115].

Although we are not the first to apply GoM-like models to gene expression data, previous

applications have been primarily motivated by a specific goal, “cell type deconvolution”,

which involves using cell-type-specific expression profiles of marker genes to estimate the

proportions of different cell types in a mixture [2, 74, 93]. Specifically, the GoM model we

use here is analogous to – although different in detail from – blind deconvolution approaches

[96, 110, 132] which estimate cell type proportions and cell type signatures jointly (see also

[92, 114] for semi-supervised approaches). Our goal here is to demonstrate that GoM models

can be useful much more broadly for understanding structure in RNA-seq data – not only

to deconvolve mixtures of cell types. For example, in our analysis of human tissue samples

from the GTEx project below, the GoM model usefully captures biological heterogeneity

among samples even though the inferred grades of membership are unlikely to correspond

precisely to proportions of specific cell types. And in our analyses of single-cell expression

data the GoM model highlights interesting structure, even though interpreting the grades

of membership as “proportions of cell types” is clearly inappropriate because each sample is

a single cell! Here we are exploiting the GoM as a flexible extension of traditional cluster

models, which can capture “continuous” variation among cells as well as the more “discrete”

variation captured by cluster models. Indeed, the extent to which variation among cells can

be described in terms of discrete clusters versus more continuous populations is a fundamental

question that, when combined with appropriate single-cell RNA-seq data, the GoM models

used here may ultimately help address.
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2.2 Methods Overview

We assume that the RNA-seq data on N samples has been summarized by a table of counts

CN×G = (cng), where cng is the number of reads from sample n mapped to gene g (or other

unit, such as transcript or exon) [86]. The GoM model is a generalization of a cluster model,

which allows that each sample has some proportion (“grade”) of membership, in each cluster.

For RNA-seq data this corresponds to assuming that each sample n has some proportion

of its reads, qnk coming from cluster k. In addition, each cluster k is characterized by a

probability vector, θk·, whose gth element represents the relative expression of gene g in

cluster k. The GoM model is then

(cn1, cn2, · · · , cnG) ∼ Multinomial (cn+, pn1, pn2, · · · , pnG) , (2.1)

where

png :=
K∑
k=1

qnkθkg. (2.2)

The number of clusters K is set by the analyst, and it can be helpful to explore multiple

values of K (see Discussion).

To fit this model to RNA-seq data, we exploit the fact that this GoM model is commonly

used for document clustering [15]. This is because, just as RNA-seq samples can be sum-

marized by counts of reads mapping to each possible gene in the genome, document data

can be summarized by counts of each possible word in a dictionary. Recognizing this allows

existing methods and software for document clustering to be applied directly to RNA-seq

data. Here we use the R package maptpx [121] to fit the GoM model.

Fitting the GoM model results in estimated membership proportions q for each sample,

and estimated expression values θ for each cluster. We visualize the membership proportions

for each sample using a “Structure plot” [99], which is named for its widespread use in

visualizing the results of the Structure software [89] in population genetics. The Structure
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plot represents the estimated membership proportions of each sample as a stacked barchart,

with bars of different colors representing different clusters. Consequently, samples that have

similar membership proportions have similar amounts of each color. See Fig 2.1 for example.

To help biologically interpret the clusters inferred by the GoM model we also imple-

mented methods to identify, for each cluster, which genes are most distinctively differen-

tially expressed in that cluster; that is, which genes show the biggest difference in expression

compared with the other most similar cluster (see Methods). Functions for fitting the GoM

model, plotting the structure plots, and identifying the distinctive (“driving”) genes in each

cluster, are included in our R package CountClust [25] available through Bioconductor [43].

2.3 Results

2.3.1 Bulk RNA-seq data of human tissue samples

We begin by illustrating the GoM model on bulk RNA expression measurements from the

GTEx project (V6 dbGaP accession phs000424.v6.p1, release date: Oct 19, 2015, http:

//www.gtexportal.org/home/). These data consist of per-gene read counts from RNA-

seq performed on 8, 555 samples collected from 450 human donors across 53 tissues, lym-

phoblastoid cell lines, and transformed fibroblast cell-lines. We analyzed 16, 069 genes that

satisfied filters (e.g. exceeding certain minimum expression levels) that were used during

eQTL analyses by the GTEx project (gene list available in http://stephenslab.github.

io/count-clustering/project/utilities/gene_names_all_gtex.txt).

We fit the GoM model to these data, with number of clusters K = 5, 10, 15, 20. For

each K we ran the fitting algorithm three times and kept the result with the highest log-

likelihood. As might be expected, increasing K highlights finer structure in the data, and

for brevity we focus discussion on results for K = 20 (Fig 2.1(a)), with results for other

K shown in S1. For comparison we also ran several other commonly-used methods for
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clustering and visualizing gene expression data: Principal Components Analysis (PCA),

Multidimensional Scaling (MDS), t-Distributed Stochastic Neighbor Embedding (t-SNE)

[128, 129], and hierarchical clustering (Fig 2.2).

These data present a challenge to visualization and clustering tools, because of both the

relatively large number of samples and the complex structure created by the inclusion of

many different tissues. Indeed, neither PCA nor MDS provide satisfactory summaries of the

structure in these data (Fig 2.2(a,b)): samples from quite different tissues are often super-

imposed on one another in plots of PC1 vs PC2, and this issue is only partly alleviated

by examining more PCs (Supplementary Figure S2). The hierarchical clustering provides

perhaps better separation of tissues (Fig 2.2(d)), but producing a clear (static) visualization

of the tree is difficult with this many samples. By comparison t-SNE (Fig 2.2(b)) and the

GoM model (Fig 2.1(a)) both show a much clearer visual separation of samples by tissue,

although they achieve this in very different ways. The t-SNE representation produces a

two-dimensional plot with 20-25 visually-distinct clusters. In contrast, the GoM highlights

similarity among samples by assigning them similar membership proportions, resulting in

groups of similarly-colored bars in the structure plot. Some tissues are represented by essen-

tially a single cluster/color (e.g. Pancreas, Liver), whereas other tissues are represented as

a mixture of multiple clusters (e.g. Thyroid, Spleen). Furthermore, the GoM results high-

light biological similarity among some tissues by assigning similar membership proportions

to samples from those tissues. For example, samples from several different parts of the brain

often have similar memberships, as do the arteries (aorta, tibial and coronary) and skin

samples (sun-exposed and un-exposed).

Although it is not surprising that samples cluster by tissue, other results could have

occurred. For example, samples could have clustered according to technical variables, such

as sequencing batch [44] or sample collection center. While our results do not exclude the

possibility that technical variables could have influenced these data, the t-SNE and GoM
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results clearly demonstrate that tissue of origin is the primary source of heterogeneity, and

provide a useful initial assurance of data quality.

While in these data both the GoM model and t-SNE highlight the primary structure

due to tissue of origin, the GoM results have at least two advantages over t-SNE. First,

the GoM model provides an explicit, quantitative, estimate of the mean expression of each

gene in each cluster, making it straightforward to assess which genes and processes drive

differences among clusters; see Table 2.1. Reassuringly, many results align with known

biology. For example, the purple cluster (cluster 18), which distinguishes Pancreas from other

tissues, is enriched for genes responsible for digestion and proteolysis, (e.g. PRSS1, CPA1,

PNLIP). Similarly the yellow cluster (cluster 12), which primarily distinguishes Cell EBV

Lymphocytes from other tissues, is enriched with genes responsible for immune responses

(e.g. IGHM, IGHG1 ) and the pink cluster (cluster 19) which mainly appears in Whole

Blood, is enriched with genes related hemoglobin complex and oxygen transport (e.g. HBB,

HBA1, HBA2 ). Further, Keratin-related genes characterize the skin cluster (cluster 6, light

denim), Myosin-related genes characterize the muscle skeletal cluster (cluster 7, orange),

etc. These biological annotations are particularly helpful for understanding instances where

a cluster appears in multiple tissues. For example, the top genes in the salmon cluster (cluster

4), which is common to the Gastroesophageal Junction, Esophagus Muscularis and Colon

Sigmoid, are related to smooth muscle. And the top genes in the red cluster, highlighted

above as common to Breast Mammary tissue, Adipose Subcutaneous and Adipose Visceral,

are all related to adipocytes and/or fatty acid synthesis.

A second advantage of the GoM model is that, because it allows partial membership in

each cluster, it is better able to highlight partial similarities among distinct tissues. For

example, in Figure 2.1(a) the sky blue cluster (cluster 13), appears in testis, pituitary, and

thyroid, reflecting shared hormonal-related processes. At the same time, these tissues are

distinguished from one another both by their degree of membership in this cluster (testis
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samples have consistently stronger membership; thyroid samples consistently weaker), and

by membership in other clusters. For example, pituitary samples, but not testis or thyroid

samples, have membership in the light purple cluster (cluster 2) which is driven by genes

related to neurons and synapsis. In the t-SNE results these three tissues simply cluster

separately into visually distinct groups, with no indication that their expression profiles

have something in common (Fig 2.2(b)). Thus, although we find the t-SNE results visually

attractive, this 2-dimensional projection contains less information than the Structure plot

from the GoM (Fig 2.1(a)), which uses color to represent the samples in a 20-dimensional

space.

In addition to these qualitative comparisons with other methods, we also used the GTEx

data to quantitatively compare the accuracy of the GoM model with hierarchical clustering.

Specifically, for each pair of tissues in the GTEx data we assessed whether or not each method

correctly partitioned samples into the two tissue groups; see Methods. (Other methods do not

provide an explicit clustering of the samples – only a visual representation – and so are not

included in these comparisons.) The GoM model was more accurate in this test, succeeding

in 88% of comparisons, compared with 79% for hierarchical clustering (Supplemental Figure

S3 (c) vs (a)).

2.3.2 Sub-analysis of Brain tissues

Although the analysis of all tissues is useful for assessing global structure, it may miss finer-

scale structure within tissues or among similar tissues. For example, here the GoM model

applied to all tissues effectively allocated only three clusters to all brain tissues (clusters

1,2 and 9 in Fig 2.1(a)), and we suspected that additional substructure might be uncovered

by analyzing the brain samples separately and using more clusters. Fig 2.1(b) shows the

Structure plot for K = 6 on only the Brain samples. The results highlight much finer-scale

structure compared with the global analysis. Brain Cerebellum and Cerebellar hemisphere
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are essentially assigned to a separate cluster (lime green), which is enriched with genes related

to cell periphery and communication (e.g. PKD1, CBLN3 ) as well as genes expressed largely

in neuronal cells and playing a role in neuron differentiation (e.g. CHGB). The spinal cord

samples also show consistently strong membership in a single cluster (yellow-orange), the

top defining gene for the cluster being MBP which is involved in myelination of nerves in

the nervous system[56]. Another driving gene, GFAP, participates in system development

by acting as a marker to distinguish astrocytes during development [7].

The remaining samples all show membership in multiple clusters. Samples from the

putamen, caudate and nucleus accumbens show similar profiles, and are distinguished by

strong membership in a cluster (cluster 4, bright red) whose top driving gene is PPP1R1B, a

target for dopamine. And cortex samples are distinguished from others by stronger member-

ship in a cluster (cluster 2, turquoise in Fig 2.1(b)) whose distinctive genes include ENC1,

which interacts with actin and contributes to the organisation of the cytoskeleton during the

specification of neural fate [51].

In comparison, applying PCA, MDS, hierarchical clustering and t-SNE to these brain

samples reveals less of this finer-scale structure (Supplementary Figures S4). Both PCA

and MDS effectively cluster the samples into two groups – those related to the cerebellum

vs everything else. Hierarchical clustering also separates out the cerebellum-related tissues

from the others, but again the format seems ill-suited to static visualization of more than

one thousand samples. For reasons that we do not understand t-SNE performs poorly for

these data: many samples are allocated to essentially identical locations, and so overplotting

obscures them.

2.3.3 Single-cell RNA-seq data

Recently RNA-sequencing has become viable for single cells [123], and this technology has

the promise to revolutionize understanding of intra-cellular variation in expression, and reg-
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ulation more generally [127]. Although it is traditional to describe and categorize cells in

terms of distinct cell-types, the actual architecture of cell heterogeneity may be more com-

plex, and in some cases perhaps better captured by the more “continuous” GoM model. In

this section we illustrate the potential for the GoM model to be applied to single cell data.

To be applicable to single-cell RNA-seq data, methods must be able to deal with lower

sequencing depth than in bulk RNA experiments: single-cell RNA-seq data typically involve

substantially lower effective sequencing depth compared with bulk experiments, due to the

relatively small number of molecules available to sequence in a single cell. Therefore, as a first

step towards demonstrating its potential for single cell analysis, we checked robustness of the

GoM model to sequencing depth. Specifically, we repeated the analyses above after thinning

the GTEx data by a factor of 100 and 10, 000 to mimic the lower sequencing depth of a typical

single cell experiment. For the thinned GTEx data the Structure plot for K = 20 preserves

most of the major features of the original analysis on unthinned data (Supplemental Figure

S5). For the accuracy comparisons with hierarchical clustering, both methods suffer reduced

accuracy in thinned data, but the GoM model remains superior (Supplemental Figure S6).

For example, when thinning by a factor of 10, 000, the success rate in separating pairs of

tissues is 0.32 for the GoM model vs 0.10 for hierarchical clustering.

Having established its robustness to sequencing depth, we now illustrate the GoM model

on two single cell RNA-seq datasets: data on mouse spleen from Jaitin et al [57] and data

on mouse preimplantation embryos from Deng et al [22].

Mouse Spleen data from Jaitin et al, 2014

Jaitin et al sequenced over 4, 000 single cells from mouse spleen. Here we analyze 1, 041

of these cells that were categorized as CD11c+ in the sorting markers column of their

data (http://compgenomics.weizmann.ac.il/tanay/?page_id=519), and which had total

number of reads mapping to non-ERCC genes greater than 600. Our hope was that applying
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the GoM model to these data would identify, and perhaps refine, the cluster structure evident

in [57] (their Fig 2A and 2B). However, the GoM model yielded rather different results

(Fig 2.3), where most cells were assigned to have membership in several clusters. Further,

the cluster membership vectors showed systematic differences among amplification batches

(which in these data is also strongly correlated with sequencing batch). For example, cells in

batch 1 are characterized by strong membership in the orange cluster (cluster 5) while those

in batch 4 are characterized by strong membership in both the blue and yellow clusters (2

and 6). Some adjacent batches show similar patterns - for example batches 28 and 29 have

a similar visual “palette”, as do batches 32-45. And, more generally, these later batches are

collectively more similar to one another than they are to the earlier batches (0-4).

The fact that batch effects are detectable in these data is not particularly surprising:

there is a growing recognition of the importance of batch effects in high-throughput data

generally [21, 71] and in single cell data specifically [44, 52]. And indeed, both clustering

methods and the GoM model can be viewed as dimension reduction methods, and such

methods can be helpful in controlling for batch effects [72, 118]. However, why these batch

effects are not evident in Fig 2A and 2B of [57] is unclear.

Mouse preimplantation embryo data from Deng et al, 2014

Deng et al collected single-cell expression data of mouse preimplantation embryos from the

zygote to blastocyst stage [22], with cells from four different embryos sequenced at each stage.

The original analysis [22] focuses on trends of allele-specific expression in early embryonic

development. Here we use the GoM model to assess the primary structure in these data

without regard to allele-specific effects (i.e. combining counts of the two alleles). Visual

inspection of the Principal Components Analysis in [22] suggested perhaps 6-7 clusters, and

we focus here on results with K = 6.

The results from the GoM model (Fig 2.4) clearly highlight changes in expression profiles
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that occur through early embryonic development stages, and enrichment analysis of the

driving genes in each cluster (Table 2.3) indicate that many of these expression changes

reflect important biological processes during embryonic preimplantation development.

In more detail: Initially, at the zygote and early 2-cell stages, the embryos are represented

by a single cluster (blue in Fig 2.4) that is enriched with genes responsible for germ cell

development (e.g., Bcl2l10 [138], Spin1 [35]). Moving through subsequent stages the grades

of membership evolve to a mixture of blue and magenta clusters (mid 2-cell), a mixture of

magenta and yellow clusters (late 2-cell) and a mixture of yellow and green (4-cell stage). The

green cluster then becomes more prominent in the 8-cell and 16-cell stages, before dropping

substantially in the early and mid-blastocyst stages. That is, we see a progression in the

importance of different clusters through these stages, from the blue cluster, moving through

magenta and yellow to green. Examining the genes distinguishing each cluster reveals that

this progression (blue-magenta-yellow-green) reflects the changing relative importance of

several fundamental biological processes. The magenta cluster is driven by genes responsible

for the beginning of transcription of zygotic genes (e.g., Zscan4c-f show up in the list of top

100 driving genes : see https://stephenslab.github.io/count-clustering/project/

src/deng_cluster_annotations.html), which takes place in the late 2-cell stage of early

mouse embryonic development [36]. The yellow cluster is enriched for genes responsible

for heterochromation Smarcc1 [108] and chromosome stability Cenpe [91]. And the green

cluster is enriched for cytoskeletal genes (e.g., Fbxo15 ) and cytoplasm genes (e.g., Tceb1,

Hsp90ab1 ), all of which are essential for compaction at the 8-cell stage and morula formation

at the 16-cell stage.

Finally, during the blastocyst stages two new clusters (purple and orange in Fig 2.4)

dominate. The orange cluster is enriched with genes involved in the formation of trophec-

toderm (TE) (e.g., Tspan8, Krt8, Id2 [48]), while the purple cluster is enriched with genes

responsible for the formation of inner cell mass (ICM) (e.g., Pdgfra, Pyy [55]).
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For comparison, results for PCA, MDS, t-SNE and hierarchical clustering are shown

in Supplemental Figure S7. All these methods show some clustering structure by pre-

implantation stage; however only PCA and MDS seem to capture the developmental tra-

jectory from zygote to blastocyst, exhibiting a “horse-shoe” pattern that is expected when

similarities among samples approximately reflect an underlying latent ordering [29, 84]. And

none of them provide any direct indication of the ICM vs TE structure in the blastocyst

samples.

Although the GoM model results clearly highlight some of the key biological processes

underlying embryonic preimplantation development, there are also some expected patterns

that do not appear. Specifically, just prior to implantation the embryo consists of three

different cell types, the trophectoderm (TE), the primitive endoderm (PE), and the epiblast

(EPI) [100], with the PE and EPI being formed from the ICM. Thus one might expect

the late blastocyst cells to show a clear division into three distinct groups, and for some

of the earlier blastocyst cells to show partial membership in one of these groups as they

begin to differentiate towards these cell types. Indeed, the GoM model seems well suited to

capture this process in principle. However, this is not the result we obtained in practice. In

particular, although the two clusters identified by the GoM model in the blastocyst stages

appear to correspond roughly to the TE and ICM, even the late blastocyst cells tend to show

a gradient of memberships in both these clusters, rather than a clear division into distinct

groups. Our results contrast with those from the single-cell mouse preimplantation data of

[48], measured by qPCR, where the late blastocyst cells showed a clear visual division into

three groups using PCA (their Figure 1).

To better understand the differences between our results for RNA-seq data from [22] and

the qPCR results from [48] we applied the GoM model with K = 3 to a small subset of the

RNA-seq data: the blastocyst cell data at the 48 genes assayed by [48]. These genes were

specifically chosen by them to help elucidate cell-fate decisions during early development of
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the mouse embryo. Still, the GoM model results (Supplemental Figure S8) do not support

a clear division of these data into three distinct groups (and neither do PCA or t-SNE;

Supplemental Figure S9). Rather, the GoM model highlights one cluster (Green in figure),

whose membership proportions essentially reflect expression at the Actb gene, and two other

clusters (Orange and Purple in figure) whose driving genes correspond to genes identified

in [48] as being distinctive to TE and EPI cell types respectively. The Actb gene is a

“housekeeping gene”, used by [48] to normalize their qPCR data, and its prominence in the

GoM results likely reflects its very high expression levels relative to other genes. However,

excluding Actb from the analysis still does not lead to a clear separation into three groups

(Supplemental Figure S8). Thus, although there are clear commonalities in the structure of

these RNA-seq and qPCR data sets, the structure of the single-cell RNA-seq data from [22]

is fundamentally more complex (or, perhaps, muddied), and consequently more difficult to

interpret.

In addition to trends across development stages, the GoM results also highlight some

embryo-level effects in the early stages (Fig 2.4). Specifically, cells from the same embryo

sometimes show greater similarity than cells from different embryos. For example, while all

cells from the 16-cell stage have high memberships in the green cluster, cells from two of the

embryos at this stage have memberships in both the purple and yellow clusters, while the

other two embryos have memberships only in the yellow cluster.

The GoM results also highlight a few single cells as outliers. For example, a cell from a

16-cell embryo is represented by the blue cluster - a cluster that represents cells at the zygote

and early 2-cell stage. Also, a cell from an 8-stage embryo has strong membership in the

purple cluster - a cluster that represents cells from the blastocyst stage. This illustrates the

potential for the GoM model to help in quality control: it would seem prudent to consider

excluding these outlier cells from subsequent analyses of these data.
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2.4 Discussion

Our goal here is to highlight the potential for GoM models to elucidate structure in RNA-seq

data from both single cell sequencing and bulk sequencing of pooled cells. We also provide

tools to identify which genes are most distinctively expressed in each cluster, to aid interpre-

tation of results. As our applications illustrate, the results can provide a richer summary of

the structure in RNA-seq data than existing widely-used visualization methods such as PCA

and hierarchical clustering. While it could be argued that the GoM model results sometimes

raise more questions than they answer, this is exactly the point of an exploratory analysis

tool: to highlight issues for investigation, identify anomalies, and generate hypotheses for

future testing.

Our results from different methods also highlight another important point: different

methods have different strengths and weaknesses, and can compliment one another as well

as competing. For example, t-SNE seems to provide a much clearer indication of the cluster

structure in the full GTEx data than does PCA, but does a poorer job of capturing the

ordering of the developmental samples from mouse pre-implantation embryos. While we

believe the GoM model often provides a richer summary of the sample structure, we would

expect to use it in addition to t-SNE and PCA when performing exploratory analyses.

(Indeed the methods can be used in combination: both PCA and t-SNE can be used to

visualize the results of the GoM model, as an alternative or complement to the Structure

plot.)

A key feature of the GoM model is that it allows that each sample has a proportion of

membership in each cluster, rather than a discrete cluster structure. Consequently it can

provide insights into how well a particular dataset really fits a “discrete cluster” model. For

example, consider the results for the data from Jaitin et al [57] and Deng et al [22]: in

both cases most samples are assigned to multiple clusters, although the results are closer to

“discrete” for the latter than the former. The GoM model is also better able to represent the
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situation where there is not really a single clustering of the samples, but where samples may

cluster differently at different genes. For example, in the GTEx data, the stomach samples

share memberships in common with both the pancreas (purple) and the adrenal gland (light

green). This pattern can be seen in the Structure plot (Fig 2.1) but not from other methods

like PCA, t-SNE or hierarchical clustering (Fig 2.2).

Fitting GoM models can be computationally-intensive for large data sets. For the datasets

we considered here the computation time ranged from 12 minutes for the data from [22]

(n = 259;K = 6), through 33 minutes for the data from [57] (n = 1, 041;K = 7) to 3, 370

minutes for the GTEx data (n = 8, 555;K = 20). Computation time can be reduced by

fitting the model to only the most highly expressed genes, and we often use this strategy to

get quick initial results for a dataset. Because these methods are widely used for clustering

very large document datasets there is considerable ongoing interest in computational speed-

ups for very large datasets, with “on-line” (sequential) approaches capable of dealing with

millions of documents [54] that could be useful in the future for very large RNA-seq datasets.

A thorny issue that arises when fitting clustering models is how to select the number

of clusters, K. Like many software packages for fitting these models, the maptpx package

implements a measure of model fit that provides one useful guide. However, it is worth

remembering that in practice there is unlikely to be a “true” value of K, and results from

different values of K may complement one another rather than merely competing with one

another. For example, seeing how the fitted model evolves as K increases is one way to

capture some notion of hierarchy in the clusters identified [99]. More generally it is often

fruitful to analyse data in multiple ways using the same tool: for example our GTEx analyses

illustrate how analysis of subsets of the data (in this case the brain samples) can complement

analyses of the entire data. Finally, as a practical matter, we note that Structure plots can

be difficult to read for large K (e.g. K = 30) because of the difficulties of choosing a palette

with K distinguishable colors.
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The version of the GoM model fitted here is relatively simple, and could certainly be

embellished. For example, the model allows the expression of each gene in each cluster

to be a free parameter, whereas we might expect expression of most genes to be “similar”

across clusters. This is analogous to the idea in population genetics applications that allele

frequencies in different populations may be similar to one another [37], or in document

clustering applications that most words may not differ appreciably in frequency in different

topics. In population genetics applications incorporating this idea into the model, by using

a correlated prior distribution on these frequencies, can help improve identification of subtle

structure [37] and we would expect the same to happen here for RNA-seq data.

Finally, GoM models can be viewed as one of a larger class of “matrix factorization” ap-

proaches to understanding structure in data, which also includes PCA, non-negative matrix

factorization (NMF), and sparse factor analysis (SFA); see [33]. This observation raises the

question of whether methods like SFA might be useful for the kinds of analyses we performed

here. (NMF is so closely related to the GoM model that we do not discuss it further; indeed,

the GoM model is a type of NMF, because both grades of membership and expression levels

within each cluster are required to be non-negative.) Informally, SFA can be thought of as

a generalization of the GoM model that allows samples to have negative memberships in

some “clusters” (actually, “factors”). This additional flexibility should allow SFA to capture

certain patterns more easily than the GoM model. For example, a small subset of genes that

are over-expressed in some samples and under-expressed in other samples could be captured

by a single sparse factor, with positive loadings in the over-expressed samples and negative

loadings in the other samples. However, this additional flexibility also comes at a cost of ad-

ditional complexity in visualizing the results. For example, Supplementary Figures S9, S10,

S11 show results of SFA (the version from [33]) for the GTEx data and the mouse preimplan-

tation data: in our opinion, these do not have the simplicity and immediate visual appeal of

the GoM model results. Also, applying SFA to RNA-seq data requires several decisions to
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be made that can greatly impact the results: what transformation of the data to use; what

method to induce sparsity (there are many; e.g. [9, 33, 76, 137]); whether to induce sparsity

in loadings, factors, or both; etc. Nonetheless, we certainly view SFA as complementing the

GoM model as a promising tool for investigating the structure of RNA-seq data, and as a

promising area for further work.

2.5 Methods and Materials

2.5.1 Model Fitting

We use the maptpx R package [121] to fit the GoM model (2.1,2.2), which is also known

as “Latent Dirichlet Allocation” (LDA). The maptpx package fits this model using an EM

algorithm to perform Maximum a posteriori (MAP) estimation of the parameters q and θ.

See [121] for details.

2.5.2 Visualizing Results

In addition to the Structure plot, we have also found it useful to visualize results using t-

distributed Stochastic Neighbor Embedding (t-SNE), which is a method for visualizing high

dimensional datasets by placing them in a two dimensional space, attempting to preserve the

relative distance between nearby samples [128, 129]. Compared with the Structure plot our

t-SNE plots contain less information, but can better emphasize clustering of samples that

have similar membership proportions in many clusters. Specifically, t-SNE tends to place

samples with similar membership proportions together in the two-dimensional plot, form-

ing visual “clusters” that can be identified by eye (e.g. http://stephenslab.github.io/

count-clustering/project/src/tissues_tSNE_2.html). This may be particularly help-

ful in settings where no external information is available to aid in making an informative

Structure plot.
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2.5.3 Cluster annotation

To help biologically interpret the clusters, we developed a method to identify which genes are

most distinctively differentially expressed in each cluster. (This is analogous to identifying

“ancestry informative markers” in population genetics applications [98].) Specifically, for

each cluster k we measure the distinctiveness of gene g with respect to any other cluster l

using

KLg[k, l] := θkg log
θkg
θlg

+ θlg − θkg, (2.3)

which is the Kullback–Leibler divergence of the Poisson distribution with parameter θkg

to the Poisson distribution with parameter θlg. For each cluster k, we then define the

distinctiveness of gene g as

Dg[k] = min
l 6=k

KLg[k, l]. (2.4)

The higher Dg[k], the larger the role of gene g in distinguishing cluster k from all other

clusters. Thus, for each cluster k we identify the genes with highest Dg[k] as the genes

driving the cluster k. We annotate the biological functions of these individual genes using

the mygene R Bioconductor package [124].

For each cluster k, we filter out a number of genes (top 100 for the Deng et al data [22]

and GTEx V6 data [19]) with highest Dg[k] value and perform a gene set over-representation

analysis of these genes against all the other genes in the data representing the background.

To do this, we used ConsensusPathDB database (http://cpdb.molgen.mpg.de/) [62] [88].

See Table 2.1-2.2 and Table 2.3 for the top significant gene ontologies driving each cluster

in the GTEx V6 data and the Deng et al data respectively.

2.5.4 Comparison with hierarchical clustering

We compared the GoM model with a distance-based hierarchical clustering algorithm by

applying both methods to samples from pairs of tissues from the GTEx project, and as-
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sessed their accuracy in separating samples according to tissue. For each pair of tissues we

randomly selected 50 samples from the pool of all samples coming from these tissues. For

the hierarchical clustering approach we cut the dendrogram at K = 2, and checked whether

or not this cut partitions the samples into the two tissue groups. (We applied hierarchical

clustering using Euclidean distance, with both complete and average linkage; results were

similar and so we showed results only for complete linkage.)

For the GoM model we analysed the data with K = 2, and sorted the samples by their

membership in cluster 1. We then partitioned the samples at the point of the steepest fall in

this membership, and again we checked whether this cut partitions the samples into the two

tissue groups. Supplemental Figure S3 shows, for each pair of tissues, whether each method

successfully partitioned the samples into the two tissue groups.

2.5.5 Thinning

We used “thinning” to simulate lower-coverage data from the original higher-coverage data..

Specifically, if cng is the counts of number of reads mapping to gene g for sample n for the

original data, we simulated thinned counts tng using

tng ∼ Bin(cng, pthin) (2.5)

where pthin is a specified thinning parameter.

2.5.6 Code Availability

Our methods are implemented in an R package CountClust, available as part of the Biocon-

ductor project at https://www.bioconductor.org/packages/3.3/bioc/html/CountClust.

html. The development version of the package is also available at https://github.com/

kkdey/CountClust. Code for reproducing results reported here is available at http://
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stephenslab.github.io/count-clustering/.

2.6 Author contributions

Dey, KK and Stephens, M designed the method. Dey, KK implemented the method. Dey,

KK and Hsiao, CJ ran the experiments. Dey, KK and Hsiao, CJ produced the figures. Dey,

KK, Hsiao, CJ and Stephens, M wrote the paper.
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Table 2.1: Cluster Annotations GTEx V6 data (with GO annotations).

Cluster Top 5 Driving Genes Top significant GO terms (function)[q-value]
1. Royal purple NEAT1, IGFBP5, CCLN2,

SRSF5, PNISR
GO:0005654 (nucleoplasm)[2e-10], GO:0044822 (poly-A RNA binding)[3e-09],
GO:0044428 (nuclear part)[1e-09], GO:0043233 (organelle lumen)[2e-08]

2. Light purple SNAP25, FBXL16, NCDN,
SNCB, SLC17A7

GO:0097458 (neuron part)[2e-25], GO:0007268 (synaptic transmission)[9e-18],
GO:0030182 (neuron differentiation)[2e-14], GO:0022008 (neurogenesis)[1e-13],
GO:0007267 (cell-cell signaling)[3e-13]

3. Red FABP4, PLIN1, FASN,
GPX3, LIPE

GO:0044255 (cellular lipid metabolism)[1e-09], GO:0006629 (lipid metabolism)[1e-
09], GO:0006639 (acylglycerol metabolism)[3e-08], GO:0045765 (angiogenesis
regulation)[4e-08]

4. Salmon ACTG2, MYH11, SYNM,
MYLK, CSRP1

GO:0043292 (contractile fiber)[3e-13], GO:0006936 (muscle contraction)[5e-
12], GO:0030016 (myofibril)[5e-12], GO:0015629 (actin cytoskeleton)[2e-12],
GO:0005925 (focal adhesion)[6e-11]

5. Denim RGS5, MGP, AEBP1,
IGFBP7, MFGE8

GO:0005578 (proteinaceous extracellular matrix)[4e-20], GO:0030198 (extracellu-
lar matrix)[2e-18], GO:0007155 (cell adhesion)[4e-14], GO:0001568 (blood vessel
development)[4e-13]

6. Light denim KRT10, KRT1, KRT2,
LOR, KRT14

GO:0008544 (epidermis development)[3e-12], GO:0043588 (skin development)[5e-
10], GO:0042303 (molting cycle)[8e-06], GO:0042633 (hair cycle)[7e-06],
GO:0048513 (organ development)[6e-05]

7. Orange NEB, MYH1, MYH2,
MYBPC1, ACTA1

GO:0043292 (contractile fiber)[6e-52], GO:0030016 (myofibril)[1e-51], GO:0030017
(sarcomere)[5e-40], GO:0003012 (muscle system process)[2e-25], GO:0015629
(actin cytoskeleton)[1e-25]

8. Light orange FN1, COL1A1, COL1A2,
COL3A1, COL6A3

GO:0030198 (extracellular matrix)[6e-29], GO:0043062 (extracellular
structure)[4e-29], GO:0032963 (collagen metabolism)[3e-16], GO:0030199 (collagen
fibril organization)[1e-14], GO:0030574 (collagen catabolism)[1e-14]

9. Green MBP, GFAP, MTURN,
HIPK2, CARNS1

GO:0043209 (myelin sheath)[4e-07], GO:0007399 (nervous system
development)[4e-05], GO:0008366 (axon ensheathment)[9e-05], GO:0044430
(cytoskeletal part)[1e-04], GO:0005874 (microtubule)[3e-04]

10. Light green CYP17A1, CYP11B1,
PIGR, GKN1, STAR

GO:0006694 (steroid biosynthesis)[2e-13], GO:0008202 (steroid metabolism)[1e-
12], GO:0016125 (sterol metabolism)[1e-11], GO:0042446 (hormone
biosynthesis)[1e-10], GO:0008207 (C21-steroid hormone metabolism)[3e-10]

11. Turquoise MPZ, APOD, PMP22, PRX,
NGFR

GO:0007272 (ensheathment of neurons)[4e-07], GO:0008366 (axon
ensheathment)[7e-07], GO:0042552 (myelination)[7e-06], GO:0048856 (anatom-
ical structure development)[1e-06], GO:0005578 (proteinaceous extracellular
matrix)[1e-06]

12. Yellow IGHM, IGHG1, IGHG2,
IGHG4, CD74

GO:0006955 (immune response)[1e-18], GO:0002252 (immune effector process)[7e-
18], GO:0003823 (antigen binding)[1e-15], GO:0019724 (B-cell mediated
immunity)[5e-13], GO:0002684 (positive regulation immune system)[6e-13]

13. Sky blue TG, PRL, GH1, PRM2,
PRM1

GO:0019953 (sexual reproduction)[8e-10], GO:0048232 (male gamete
generation)[2e-08], GO:0035686 (sperm fibrous sheath)[4e-06], GO:0005179
(hormone activity)[6e-05], GO:0042403 (thyroid hormone metabolism)[2e-04]

14. Light pink NPPA, MYH6, TNNT2,
ACTC1, MYBPC3

GO:0045333 (cellular respiration)[2e-34], GO:0022904 (respiratory electron
transport)[8e-33], GO:0015980 (energy derivation by oxidation of organic
compounds)[4e-30], GO:0031966 (mitochondrial membrane)[5e-26]

15. Light gray KRT13, KRT4, MUC7,
CRNN, KRT6A

GO:0070062 (extracellular exosome)[2e-23], GO:0043230 (extracellular
organelle)[3e-23], GO:0031982 (vesicle)[3e-20], GO:0008544 (epidermis
development)[2e-18], GO:0043588 (skin development)[1e-13]

16. Gray SFTPBβ, SFTPA1,
SFTPA2, SFTPC, A2M

GO:0001525 (angiogenesis)[5e-08], GO:0001944 (vasculature development)[2e-
07], GO:0048514 (blood vessel morphogenesis)[2e-07], GO:0040012 (locomotion
regulation)[4e-06], GO:2000145 (cell motility)[1e-05]

17. Brown CSF3R, MMP25, IL1R2,
SELL, VNN2

GO:0006955 (immune response)[8e-22], GO:0006952 (defense response)[9e-16],
GO:0071944 (cell periphery)[7e-15], GO:0005886 (plasma membrane)[7e-15],
GO:0050776 (regulation of immune response)[2e-12]

18. Purple PRSS1, CPA1, PNLIP,
CELA3A, GP2

GO:0007586 (digestion)[3e-14], GO:0004252 (serine-type endopeptidase
activity)[4e-08], GO:0006508 (proteolysis)[6e-06], GO:0016787 (hydrolase
activity)[6e-05], GO:0044241 (lipid digestion)[1e-04]

19. Pink HBB, HBA2, HBA1,
FKBP8, HBD

GO:0005833 (hemoglobin complex)[1e-13], GO:0015669 (gas transport)[4e-11],
GO:0020037 (heme binding)[3e-07], GO:0031720 (haptoglobin binding)[3e-06],
GO:0006950 (response to stress)[6e-04]

20. Dark gray ALB, HP, FGB, FGA,
ORM1

GO:0072562 (blood microparticle)[1e-27], GO:0043230 (extracellular organelle)[1e-
24], GO:0044710 (single organism metabolism)[7e-20], GO:0019752 (carboxylic
acid metabolism)[1e-18], GO:0034364 (high density lipoprotein)[3e-16]
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Table 2.2: Cluster Annotations for GTEx V6 Brain data.

Cluster Top 5 Driving
Genes

Top significant GO terms

1. Royal blue CLU, OXT,
GLUL, NDRG2,
CST3

GO:0043230 (extracellular organelle)[5e-11], GO:1903561 (extracellular
vesicle)[6e-11], GO:0070062 (extracellular exosome)[2e-09], GO:0006950
(response to stress)[3e-10], GO:0031988 (membrane bound vesicle)[1e-10]

2. Turquoise ENC1, NCALD,
YWHAH,
KIF5A,
NPTXR

GO:0097458 (neuron part)[3e-11], GO:0008092 (cytoskeletal protein
binding)[7e-11], GO:0031175 (neuron projection development)[7e-09],
GO:0030182 (neuron differentiation)[4e-08], GO:0007268 (synaptic
transmission)[1e-08]

3. Lime
green

PKD1, CBLN3,
CHGB,
COL27A1,
ABLIM1

GO:0005089 (Rho guanyl-nucleotide exchange factor activity)[1e-03],
GO:0016604 (nuclear body)[0.002], GO:0022008 (neurogenesis)[0.02],
GO:0035239 (tube morphogenesis)[0.08], GO:0007269 (neurotransmitter se-
cretion)[0.10]

4. Red PPP1R1B,
RGS14, NCDN,
PDE1B,
RAP1GAP

GO:0065009 (regulation of molecular function)[2e-06], GO:0036477 (soma-
todendritic compartment)[6e-05], GO:0007268 (synaptic transmission)[1e-
03], GO:0023051 (signaling regulation)[2e-03], GO:0010646 (cell communi-
cation regulation)[1e-03]

5. Yellow or-
ange

MBP, GFAP,
TF, MTURN,
SCD

GO:0043209 (myelin sheath)[2e-09], GO:0007399 (nervous system
development)[1e-04], GO:0005737 (cytoplasm)[1e-04], GO:0048471 (per-
inuclear region of cytoplasm)[5e-04], GO:0007272 (ensheathment of
neurons)[1e-02]

6. Yellow IQGAP1, A2M,
C3, MYH7, TG

GO:0072562 (blood microparticle)[1e-10], GO:0044449 (contractile fiber
part)[1e-10], GO:0043230 (extracellular organelle)[7e-10], GO:0030017
(sarcomere)[1e-08], GO:0072376 (protein activation cascade)[1e-08]
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Table 2.3: Cluster Annotations for Deng et al (2014) data.

Cluster Top 10 Driving
Genes

Top significant GO terms

1. Blue Bcl2l10,
E330034G19Rik,
Tcl1,LOC100502936,
Oas1d, AU022751,
Spin1, Khdc1b,
D6Ertd527e, Btg4

GO:0007276 (gamete generation)[7e-06], GO:0032504 (multicellu-
lar organism reproduction)[3e-06], GO:0044702 (single organism
reproduction)[2e-05], GO:0048477 (oogenesis)[5e-04], GO:0048599
(oocyte development)[1e-03], GO:0009994 (oocyte differentiation)[1e-
03]

2. Magenta Obox3, Zfp352,
Gm8300, Usp17l5,
BB287469, Rfpl4b,
Gm2022, Gm5662,
Gm11544 , Gm4850

GO:0016604 (nuclear body)[1e-04], GO:0005814 (centriole)[4e-03],
GO:0044450 (microtubule organizing center part) [8e-03]

3. Yellow Rtn2, Ebna1bp2,
Zfp259, Nasp, Cenpe,
Rnf216, Ctsl, Tor1b,
Ankrd10, Lamp2

GO:0044428 (nuclear part)[1e-08], GO:0031981 (nuclear lumen)[3e-
08], GO:0070013 (intracellular organelle lumen)[9e-08], GO:0005730
(nucleolus)[5e-07], GO:0005654 (nucleoplasm)[4e-05], GO:0003723
(RNA binding)[1e-04]

4. Green Timd2, Isyna1,
Alppl2, Prame15,
Fbxo15, Tceb1,
Gpd1l, Pemt,
Hsp90aa1, Hsp90ab1

GO:0005829 (cytosol)[4e-10], GO:0044444 (cytoplasmic part)[2e-05],
GO:1901575 (organic substance catabolic process)[9e-04], GO:0000151
(ubiquitin ligase com- plex)[1e-04], GO:0009056 (catabolic process)[1e-
03], GO:0044265 (cellular macromolecule catabolic process)[1e-03],
GO:0051082 (unfolded protein binding)[9e-04]

5. Purple Upp1, Tdgf1, Aqp8,
Fabp5, Tat, Pdgfra,
Pyy, Prdx1, Col4a1,
Spp1

GO:0044710 (single-organism metabolic process) [1e-05], GO:0006950
(response to stress) [1e-05], GO:0070062 (extracellular exosome)[1e-
05], GO:0043230 (extracellular organelle)[2e-05], GO:1903561 (extra-
cellular vesicle)[1e-05], GO:0006979 (response to oxidative stress)[7e-
04], GO:0048514 (blood vessel morphogenesis)[7e-04], GO:0001944
(vasculature development)[3e-03]

6. Orange Actb, Krt18, Fabp3,
Id2, Tspan8, Gm2a,
Lgals1, Adh1 , Lrp2,
BC051665

GO:0065010 (extracellular membrane-bounded organelle),
GO:0070062 (extracellular exosome)[4e-23], GO:0043230 (extra-
cellular organelle)[5e-23], GO:1903561 (extracellular vesicle)[3e-23],
GO:0031982 (vesicle)[4e-18], GO:0030036 (actin cytoskeleton and
organization)[4e-12], GO:0032432 (actin filament bundle)[2e-09],
GO:0005912 (adherens junction)[2e-09]
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Figure 2.1: (a): Structure plot of estimated membership proportions for GoM model with
K = 20 clusters fit to 8555 tissue samples from 53 tissues in GTEx data. Each horizontal bar
shows the cluster membership proportions for a single sample, ordered so that samples from
the same tissue are adjacent to one another.(b): Structure plot of estimated membership
proportions for K = 4 clusters fit to only the brain tissue samples.
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Figure 2.2: Visualization of the same GTEx data as in Figure 1 (a) across all tissues using
standard and widely used approaches - Principal Component Analysis (PCA), Multi dimen-
sional Scaling (MDS), t-SNE and hierarchical clustering. All the analysis are done on log
CPM normalized expression data to remove library size effects. (a): Plot of PC1 vs PC2
on the log CPM expression data, (b): Plot of first two dimensions of the t-SNE plot, (c)
Plot of first two dimensions of the Multi-Dimensional Scaling (MDS) plot. (d) Dendrogram
for the hierarchical clustring of the GTEx tissue samples based on the log CPM expression
data.
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Figure 2.3: Structure plot of estimated membership proportions for GoM model with K = 7
clusters fit to 1, 041 single cells from [57]. The samples (cells) are ordered so that samples
from the same amplification batch are adjacent and within each batch, the samples are sorted
by the proportional representation of the underlying clusters. In this analysis the samples
do not appear to form clearly-defined clusters, with each sample being allocated membership
in several “clusters”. Membership proportions are correlated with batch, and some groups
of batches (e.g. 28-29; 32-45) show similar palettes. These results suggest that batch effects
are likely influencing the inferred structure in these data.
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Figure 2.4: Structure plot of estimated membership proportions for GoM model with K = 6
clusters fit to 259 single cells from [22]. Each cluster is annotated by the genes that are most
distinctively expressed in that cluster, and by the gene ontology categories for which these
distinctive genes are most enriched.
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Chapter 3

aRchaic : Modeling and Visualization of DNA damage patterns

using a Grade of Membership Model

(with H. Al-Asadi, J. Novembre and M. Stephens)

3.1 Introduction

Ancient DNA (aDNA) research has seen rapid growth with the recent advancements in recov-

ery of short DNA fragments, increased throughput, and lower per-base cost in sequencing

[112]. Both the number and size of aDNA datasets have grown rapidly over the last five

years, and several recent studies sequenced hundreds of ancient individuals [6, 78, 79, 85].

This rapid recent growth in aDNA research has provided many new insights into human

history. However, working with aDNA remains challenging. For example, ancient samples

often contain very little endogenous DNA because in many environments DNA degrades

rapidly post-mortem [104]. Furthermore, ancient samples are often contaminated by mi-

crobes and exogenous human DNA [77]. Both these factors mean that many sequence reads

generated by an aDNA study may not actually come from the ancient sample.

Because of these challenges aDNA researchers pay careful attention to quality control

(QC), including checking sequencing reads from each sample for signatures of endogenous

aDNA. These signatures include: short fragment length, an enrichment of purines before

strand breaks, and a high frequency of cytosine to thymine substitutions (C → T ) at the

ends of fragments [16, 45, 60, 104, 116]. One common QC procedure is to plot, for each

sample, the C → T mismatch rate as a function of position from the end of the read, and to

look for an elevated rate near the ends of reads as an indication of the presence of endogenous

aDNA. Another common procedure is to look for elevated rates of purines (A & G) before
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the 5’ strand-breaks. Both these procedures are implemented in the software mapdamage

[45, 60], for example.

These commonly-used QC checks, though simple and useful, have several limitations. For

example, they produce a plot for each sample, which can be inconvenient to work with and

difficult to compare across many samples. This issue becomes increasingly important with

the growing size of aDNA datasets. These plots can also be difficult to interpret, in part

because they do not contrast observed patterns with expected patterns in modern samples.

Finally, these approaches can detect only pre-defined damage signatures, and may fail to

capture other key features or artifacts in the data.

Here we introduce methods to help address these problems. These methods start with a

Binary Alignment Map (BAM) file, obtained by aligning each read to a reference genome.

The BAM file includes information on the mismatches that occur in each read (vs the

reference). We characterize each mismatch by several relevant features, including its type

(e.g. C → G, etc), flanking bases, and distance from the end of the read. We then use these

features to cluster the mismatches into groups, which we call mismatch profiles. Intuitively,

a mismatch profile associated with post-mortem damage is expected to show high levels of

C → T mismatches at the ends of reads. On the other hand, a mismatch profile that is

typical of modern DNA polymorphism will show a different pattern, such as a transition to

transversion ratio of 2:1 [46]. Finally we estimate the relative frequency of each mismatch

profile in each sample, which we refer to as the “Grade of membership” [34] of that sample in

that mismatch profile. These grades of membership should reflect which processes generated

mismatches in each sample. For example ancient samples should have a high grade of

membership in mismatch profiles characteristic of post-mortem DNA damage. Grade of

membership models are widely used to infer structure in admixed populations [89], document

collections [15], RNA-seq data [24] and somatic mutation data [115] for example.

We have implemented methods to fit this model, and visualize the results in a software
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package, aRchaic. For example, the grades of membership for all samples are succinctly

displayed in a single STRUCTURE plot [99], and each mismatch profile is displayed using

simple intuitive plots [26]. Together these plots provide a concise visual summary of DNA

damage patterns, as well as other processes generating mismatches in the data.

3.2 Methods

For each sample i = 1, . . . , I we first obtain a BAM file. From this BAM file we extract

information on the mismatches (vs a reference) that occur in reads from the sample. First

we filter out low-quality reads (mapping ≤ 30), low-quality mismatches (base quality ≤ 20),

and mismatches that occur more than 20bp from the end of a read (since these are unlikely

to reflect damage patterns []). When a read carries more than one mismatch we treat these

as independent (an assumption we verified by checking that the probability of a mismatch

conditional on the occurrence of another mismatch on the same read is not significantly

different from the marginal probability, p-value = 0.43).

Let Ji denote the total number of remaining mismatches, and for each mismatch j =

1, · · · , Ji let xi,j = (xi,j,1, xi,j,2, xi,j,3, xi,j,4, xi,j,5) denote the following features:

• xi,j,1 ∈ {T → A, T → G, T → C, C → T, C → A, C → G} denotes the mismatch.

• xi,j,2 ∈ {A,C,G,T} denotes the nucleotides immediately 5’ to the mismatch on the

reference genome.

• xi,j,3 ∈ {A,C,G,T} denotes the nucleotides immediately 3’ to the mismatch on the

reference genome.

• xi,j,4 ∈ {1, ...20} denotes the distance from the mismatch to the (nearest) end of the

read.
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• xi,j,5 ∈ {A,C,G,T} denotes the nucleotide of the base directly 5’ to the position of

the strand break of the read.

These features are designed to reflect the major modes of DNA damage ([16, 90, 104,

104]). For each feature l ∈ {1, . . . , 5} we let Ml denote the number of possible values of

xi,j,l, and for notational convenience we treat xi,j,l as being in {1, . . . ,Ml}. For example we

represent xi,j,1 = T → A by xi,j,1 = 1.

Our model assumes that each mismatch in each individual arose from one of K mismatch

profiles (“clusters”). We introduce latent variables zi,j ∈ {1, .., K} to denote the profile that

gave rise to mismatch j in individual i. We assume

Pr(zi,j = k) = qi,k, (3.1)

where qi,k represents the membership proportion of individual i in mismatch profile (cluster)

k ∈ 1, .., K.

We further assume that, given zi,j = k,

Pr(xi,j,l = m|zi,j = k) = fk,l(m), (3.2)

where m ∈ {1, . . . ,Ml}, and fk,l(m) denotes the relative frequency of m at feature l in

cluster k. We follow [115] in assuming independence among features within each cluster.

Putting this all together, and assuming independence of observations yields the likelihood:

L(q, f ;x) =
∏
i,j,l

∑
k

fk,l(xi,j,l)qi,k. (3.3)

We fit this model, and estimate the individual parameters (q) and cluster parameters (f)

by maximum likelihood using an accelerated EM algorithm. We use the same EM updates

as in equations 2-4 in [115], and we add first-order quasi-Newton acceleration to improve
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convergence [3, 67, 121].

For each cluster k, we visualize the cluster parameters fk using as an EDLogo plot [26].

The EDLogo plot allows one to visualize both enrichment and depletion of mismatch fea-

tures scaled against a reference frequency. In our application, the reference frequency was

computed from individuals in the 1000 Genomes Project because we wanted to compare mis-

match profiles in our samples against that of modern individuals [1]. We use a STRUCTURE

plot [99] to visualize the estimates of qi,k for each sample.

3.3 Results

We demonstrate the utility of aRchaic using three case-studies.

3.3.1 aRchaic clustering of modern and ancient individuals

We applied aRchaic to a combined dataset of xx ancient samples from four recent studies

[42, 68, 79, 116] and 60 modern samples from the 1000 Genomes Project [1] (n=50) and

HGDP [] (n=10). Two of the aDNA studies used partial-UDG treated libraries, which

removes most – but not all – of the damage [97].

Figure 3.2 shows results from aRchaic with K = 3 (see Supplementary Figure S12 for

K = 4, 5, 6). To give a sense of computational requirements, these results took approximately

23 minutes on a single modern compute node. The results clearly highlight differences be-

tween modern, ancient (UDG), and ancient (non-UDG) samples. The modern samples show

very strong membership in a single cluster (red). As expected, this ”modern” cluster shows

only modest enrichment in its mismatch type, flanking base composition, and mismatch

location, relative to the modern background.

Ancient (non-UDG) samples show high membership in a second cluster (blue). This

cluster is characterized by a very strong enrichment of C → T mismatches at the ends of

the reads, which is a typical sign of DNA damage [97]. This enrichment is also accompanied
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by a depletion of guanine just 3’ to the mismatch, which likely reflect the fact that the CpG

combination occurs less often than expected by chance [113].

The ancient UDG-treated individuals show high membership in both the red cluster and

a third (orange) cluster. The high membership in the red cluster presumably reflects the fact

that the UDG-treatment repairs much of the damage in these samples, making them look

more ”modern” in their mismatch profiles. The orange cluster is characterized by enrichment

of C → T mismatches very close to the ends of reads, with a strong enrichment of guanine

at the right flanking base. That is, an enrichment of CpG-to-TpG mismatches at the ends

of reads. This may be explained by the fact that when a methylated cytosine undergoes

deamination it becomes thymine (in contrast to unmethylated cytosines, which deaminate

to uracil) and these thymines are not repaired by the UDG-treatment [30].

3.3.2 The effects of contamination on inferred grades of membership

We next sought to examine the effects of exogenous modern contamination on inferred grades

of memberships in ancient samples. Here, we define contamination as the percentage of reads

(with at least one mismatch) that originate from a modern individual.

We performed an in-silico experiment to artificially contaminate ancient samples with

modern data from the 1000 Genomes Project [1]. We selected one BAM file from an ancient

sample (K01 from [42]), and split its reads (with at least one mismatch) into 10 equal subsets.

We then contaminated each subset with reads from a distinct modern individual from the

1000 Genomes Project, varying the contamination level from 0% to 10% (Figure 3.3A). This

results in 10 samples (S1-S10) representing 10 contaminated ancient samples with known

levels of modern contamination.

We applied aRchaic with K = 2 on the contaminated samples (S1-S10) plus 40 other

modern individuals (randomly sampled from the 1000 Genomes Project; Figure 3.3B). Mod-

ern individuals showed high grades of membership in one cluster (red). Uncontaminated
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ancient sample showed essentially no membership in this cluster. For contaminated ancient

samples, membership in the red cluster increased linearly with the level of contamination

(Figure 3.3-C). We obtained similar results even with only 10000 randomly-sampled reads for

each sample (Figure 3.3-D) implying that these results are robust to low sequencing depth.

Although these experiments show that aRchaic reflect contamination, the grades of mem-

bership may not be direct estimates of the proportion of contamination. Indeed, directly

estimating amounts of contamination seems difficult in general because lack of damage does

not imply contamination: well-preserved ancient samples may also show reduced levels of

DNA damage.

3.3.3 aRchaic can identify both DNA damage and technical artifacts

As a final case study, we compiled data from 25 modern and 25 ancient Native Americans

from the Northwest Coast of North America [73]. This dataset offers us a opportunity to

apply aRchaic on modern and ancient DNA samples collected from the same population

and sequenced in the same laboratory. In these data, the first two positions from the 5’ end

of each read had been removed by the original authors in an attempt to mitigate effects of

DNA damage. Despite this, aRchaic, when applied with K = 2 to all 50 samples, clearly

distinguishes between modern and ancient individuals (Supplementary Figure S14).

When we applied aRchaic to just modern samples we were surprised to find that it

also identified two clear clusters (Figure 3.4 panel (a)). These turned out to reflect the

fact that the modern samples had been processed using two different library preparation

kits, Nextera & True-Seq [73]. Samples prepared with the True-Seq kit showed nearly full

membership in one cluster (pink), whereas those prepared with the Nextera kit showed

partial membership in a second cluster (beige). These clusters show only small differences in

mismatch patterns, but the beige cluster is characterized by a strong excess of mismatches

at position 12, apparently an artifact introduced by the Nextera preparation (3.4).
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We also applied aRchaic with K = 2 to just the ancient samples (see Figure 3.4 panel

(b)). Unlike the moderns, this yielded a continuous gradient of memberships in the two

clusters (blue and gold). One cluster (blue) is dominated by the strong enrichment of C → T

mismatches relative to the modern background that is typical of ancient samples. The other

cluster (gold) is enriched not only for C → T mismatches, but also for C → A and T → A

mismatches, possibly representing other types of damage, or other artifacts, in the ancient

DNA. Interestingly, the individual with highest membership in this gold cluster was much

older than all the others (≈ 6000 years BP; all other samples are ≈ 2000 years BP).

3.4 Discussion

We developed a method (aRchaic) for clustering and visualization of samples based on

DNA mismatch patterns. Our method is based on a grade of membership (GoM) model,

which generalizes the concept of clustering to allow samples to have membership in multiple

clusters. We provide a visual representation of the grades of membership using a “‘Structure-

plot” [99] and visualization of the mismatch profiles (or clusters) with an EDLogo plot [26].

In GoM models, the choice of the number of clusters K (or mismatch profiles) is a con-

tentious issue. In our analyses we selected values of K that highlight interpretable structure

in the data. We emphasize that there will typically be no single ”true” K, and that examin-

ing results with different K can often provide additional insights [23]. For example, Figure

2 shows results for K = 3, but higher values of K reveal additional structure within each

ancient subgroup (Supplementary Figure S12).

A key challenge in analyzing ancient DNA is that data are often contaminated with ex-

ogenous modern DNA. Several approaches have been suggested to estimate the amount of

contamination. One approach is to compute the rate of polymorphism across the X chromo-

some in males [65, 94], where the presence of polymorphism would suggest contamination

because males have only one X chromosome. Another approach is to quantify the contribu-
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tion of a panel of modern mitochondrial haplotypes to the ancient DNA [41, 95]. Both of

these approaches require reasonably high sequencing depth. aRchaic is not an explicit model

of contamination, but in some settings (e.g. Figure 3.3) the inferred grades of membership

can reflect relative degrees of contamination even with low sequencing depth, and may be a

useful complement to these other methods.

Here we have chosen to model features at the level of mismatches which have been shown

to be informative of DNA damage in previous studies [16, 45, 60]. Alternatively, one could

formulate a model at the level of reads. For example, the method PMDtools computes a

score for every read representing the probability that the read is damaged [117]. This method

models mismatches along the read; additionally, one can incorporate indels and fragment

length along with mismatches. One reason we chose not to model these extra features was

to reduce the feature and computational complexity of our method. Furthermore, these extra

features may not actually be driven by DNA damage. For example, we explored fragment

length profiles in several aDNA data-sets and found their distributions to be primarily driven

by lab-specific effects rather than DNA damage. Another limitation of fragment length is

that it can be used only in studies using paired-end sequencing.

Methods described here are available in a R/python open-source software package at

www.github.com/kkdey/aRchaic.

3.5 Author Contributions

Dey, KK and Al-Asadi, H designed the method. Dey, KK and Al-Asadi, H implemented the

method. Dey, KK and Al-Asadi, H ran the experiments. Dey, KK and Al-Asadi, H produced

the figures. Dey, KK, Al-Asadi H, and Stephens, M wrote the paper.

3.6 Figures
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Figure 3.1: Illustration of the aRchaic grades of membership and mismatch profiles. (a) The
features of a mismatch modeled by aRchaic (b) A depiction of an ancient DNA sample that
has 80% of it’s reads assigned to cluster 1 cluster and 20% of it’s reads assigned to cluster
2. Each cluster is defined by a mismatch profile showing the enrichment of the mismatch
type, bases flanking the mismatch, the distance of the mismatch from the nearest end of the
read, and the base immediately 5’ to the strand-break. To produce a mismatch profile for
a cluster, mismatch features are aggregated across reads assigned to the cluster, and their
frequencies are represented by an EDLogo plot [26]. In the EDLogo plot, the frequencies are
scaled against a background frequency computed from The 1000 Genomes Project [1].
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Figure 3.2: aRchaic clearly distinguishes between modern, ancient (UDG), and ancient
(non-UDG) samples aRchaic is applied with K = 3 to a collection of ancient individuals
from four studies [42, 68, 79, 116] along with modern individuals randomly sampled from
the 1000 Genomes Project and the Human Genome Diversity Panel [1, 17]. Modern samples
have high membership in the red cluster. The EDLogo representation of this cluster does
not show strong enrichment against a modern background. The ancient (non-UDG) samples
are representative of the blue cluster. The EDLogo plot for the blue cluster shows a strong
enrichment in C → T mismatches at the end of reads, a depletion of Guanine in the right
flanking base, and a depletion of Cytosine at the 5’ strand-break. The ancient (UDG) samples
have partial membership both in the red cluster and in the gold cluster. The EDLogo plot
for the gold cluster is enriched in C → T mismatches at the terminal ends of the reads, and
also shows an enrichment of Guanine at the right flanking base.
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Figure 3.3: Estimated grades of membership reflect levels of contamination (a) Reads from
one ancient individual (KO1 from [42]) were split into 10 equally sized groups. To each of
these groups, reads (with at least one mismatch) were added from a distinct individual in
the 1000 Genomes Project [1] to each group (S1-S10) at varying levels of contamination. (b)
We applied aRchaic with K = 2 on a combined dataset comprised of these 10 contaminated
groups of reads (S1-S10) along with 40 other modern individuals from 1000 Genomes (c)
The grades of membership in cluster (red) were plotted as a function of the percentage
of contamination. (d) Each group (S1-S10) was further sub-sampled to 10,000 reads, and
aRchaic was applied with K = 2 to the new subsampled groups and the same 40 modern
individuals as in panel b.
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Figure 3.4: DNA damage and library preparation techniques drive grades of membership
(a) We applied aRchaic with K = 2 to 25 modern samples from [73]. The samples prepared
with the True-Seq kit show nearly full membership in the pink cluster. Samples prepared
with the Nextera kit show partial membership in the pink cluster and the tan cluster. The
tan cluster shows a blip at the 12th position from the end of the read (b) We applied aRchaic

with K = 2 to 25 ancient samples from [73]. The two clusters show an enrichment of C → T
mismatches at the ends of reads and an enrichment of purines at the 5’ strand-break.
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Chapter 4

Logolas : Enrichment Depletion and String Logo Plots

(with Dongue Xie and M. Stephens)

4.1 Introduction

Since their introduction in the early 90’s by Schneider and Stephens [109], sequence logo

plots have become widely used for visualizing short conserved patterns known as sequence

motifs, in multiple alignments of DNA, RNA and protein sequences. At each position in the

alignment, the standard logo plot represents the relative frequency of each character (base,

amino acid etc) by stacking characters on top of each other, with the height of each character

proportional to its relative frequency. The characters are ordered by their relative frequency,

and the total height of the stack is determined by the information content of the position.

The visualization is so appealing that methods to produce logo plots are now implemented in

many software packages (e.g. seqLogo [8], RWebLogo [130], ggseqlogo [131]) and web servers

(e.g. WebLogo [20], Seq2Logo [125], iceLogo [18]).

Because the standard logo plot scales the height of each character proportional to its

relative frequency, it tends to visually highlight characters that are enriched; that is, at

higher than expected frequency. In many applications such enrichments may be the main

features of interest, and the standard logo plot serves these applications well. However,

sometimes it may be equally interesting to identify depletions: characters that occur less

often than expected. The standard logo plot represents strong depletion by the absence of a

character, which produces less visual emphasis than an enrichment.

To better highlight depletions in amino acid motifs [125] suggest several alternatives to

the standard logo plot. The key idea is to explicitly represent depletions using characters
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that occupy the negative part of the y axis. However, we have found that the resulting

plots sometimes suffer from visual clutter – too many symbols, which distract from the main

patterns of enrichment and depletion.

Here we suggest a simple solution to this problem, producing a new sequence logo plot –

the Enrichment Depletion Logo or EDLogo plot – that highlights both enrichment and deple-

tion, while minimizing visual clutter. In addition, we extend the applicability of logo plots

to new settings by i) allowing each “character” in the plot to be an arbitrary alphanumeric

string (potentially including user-defined symbols); and ii) allowing a different “alphabet” of

permitted strings at each position. All these new features are implemented in our R package,

Logolas, which can produce generalized string-based logo and EDLogo plots. We illustrate

the utility of the EDLogo plot and the flexibility of the string-based representation through

several applications.

4.2 Implementation

4.2.1 Intuition

In essence, the goal of a logo plot is to represent, at each position along the x axis, how

a probability vector p compares with another probability vector q. For example, suppose

that at a specific position in a set of aligned DNA sequences, we observe relative frequencies

p = (pA, pC , pG, pT ) = (0.33, 0.33, 0.33, 0.01) of the four bases {A,C,G, T}. The goal of the

logo plot might be to represent how p compares with the background frequencies of the four

bases, which for simplicity we will assume in this example to be equal: q = (qA, qC , qG, qT ) =

(0.25, 0.25, 0.25, 0.25). Verbally we could describe the change from q to p in several ways:

we could say “T is depleted”, or “A,C and G are enriched”, or “T is depleted, and A,C and

G are enriched”. While all of these are valid statements, the first is the most succinct, and

our EDLogo plot provides a visual version of that statement. The second statement is more
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in line with a standard logo representation, and the last is in essence the approach in [125].

See Figure 4.1.
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Figure 4.1: Illustration of the differences between standard logo, EDLogo and
wKL-Logo representations. The figure shows how the different logos represent observed
frequencies p = (pA, pC , pG, pT ) = (0.33, 0.33, 0.33, 0.01) (compared with a uniform back-
ground, q = (0.25, 0.25, 0.25, 0.25)). The standard logo effectively represents p by highlight-
ing that “A, C and G are enriched”; EDLogo represents it by highlighting “T is depleted”;
wKL-Logo represents it as “A, C and G are enriched and T is depleted”. All are correct
statements, but the EDLogo representation is the most parsimonious.

4.2.2 The EDLogo plot

At a particular position, j, of a sequence (or other indexing set), let p = (p1, p2, . . . , pn)

denote the probabilities of the n elements C1, . . . , Cn (which can be characters or strings)
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permitted at that position, and q = (q1, q2, . . . , qn) denote corresponding background prob-

abilities. Define r = (r1, r2, . . . , rn) by:

ri = log2
pi
qi
−median

({
log2

pi
qi

: i = 1, 2, . . . , n

})
. (4.1)

Then at position j along the x axis, the EDLogo plot plots the element Ci, scaled to have

height |ri|, and above the x axis if ri is positive, or below the x axis if ri is negative. Elements

are stacked (from bottom to top) in order of increasing ri, so that the largest characters are

furthest from the axis. (In practice, to avoid potential numerical issues if pi or qi are very

small, we add a small value ε to each element pi and qi before computing ri; default ε = 0.01.)

The basic strategy has close connections to ideas in [125], but with the crucial difference

that we subtract the median in Equation 4.1. As our examples will demonstrate, subtracting

the median in this way – which can be motivated by a parsimony argument (see below) –

can dramatically change the plot, and substantially reduce visual clutter.

Note that the EDLogo plot for p vs q is essentially a mirror (about the x axis) of

the EDLogo plot for q vs p (e.g. Supplementary Figure S16). We call this the “mirror

property”, and it can be interpreted as meaning that the plots treat enrichment and depletion

symmetrically. This property is also satisfied by plots in [125], but not by the standard logo

plot.

A model-based view

Suppose we model the relationship of p to q by

pi ∝ λiqi (4.2)

for some unknown (positive) “parameters” λi. For example, this model would arise if q

represents the underlying frequencies of elements in a population, and p represents the
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frequencies of the same elements in a (large) sample from that population, conditional on

an event E (e.g. a transcription factor binding). Indeed, by Bayes theorem, under this

assumption we would have

pi ∝ Pr(E|element i)qi. (4.3)

Since the pi must sum to 1,
∑

i pi = 1, the model (4.2) implies

pi = λiqi/
∑
j

λjqj . (4.4)

Now consider estimating the parameters λ. Even if p and q are observed without error,

there is a non-identifiability in estimating λ: we can set λi = cpi/qi for any positive c.

Equivalently, if we consider estimating the logarithms li := log λi, we can set

li = log2(pi/qi) + k (4.5)

for any constant k. Note that ri in (4.1) has exactly this form, and so the vector r can be

interpreted as an estimate of the vector l. Furthermore, it is easy to show that, among all

estimates of the form (4.5), r has the smallest sum of absolute values. That is, r solves the

optimization

r = arg min
l

∑
i

|li| (4.6)

subject to the constraint (4.5).

Since the sum of absolute values of r is the total height of the stacked characters in the

EDLogo plot, one can think of our choice of r as the estimate of l that produces the smallest

stack of characters – that is, the most “parsimonious” estimate.
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4.2.3 Interpretation

Roughly speaking, positive values of ri can be interpreted as indicating characters that are

“enriched” and negative values of ri as indicating characters that are “depleted”. Formally we

must add that here enrichment and depletion are to be interpreted as relative to the median

enrichment/depletion across characters. This relative enrichment does not necessarily imply

enrichment or depletion in some “absolute” sense: for example, ri could be positive even

if pi is smaller than qi. For compositional data it seems natural that enrichment/depletion

be interpreted relative to some “baseline”, and our choice of the median as the baseline is

motivated above as providing the most parsimonious plot.

It may also help interpretation to note that for any two characters i and i′, the difference

ri − ri′ is equal to the log-odds ratio:

ri − ri′ = log2

(
pi/pi′

qi/qi′

)
. (4.7)

4.2.4 A variation: the scaled EDLogo plot

In the standard logo plot the total height of the stack at each position is scaled to reflect the

“information content” at that position, or, more generally, the Kullback–Leibler divergence

(KLD) from the background frequencies q to the observed frequencies p [120]. This scaling

highlights locations where p differs most strongly from q. Similarly, the stack heights in the

EDLogo plot also reflect the extent to which p differs from q; for example, if p = q then the

stack height is 0. However, the EDLogo stack heights are not equal to the KLD.

Empirically, compared with the standard KLD stack heights, the stack heights in the

EDLogo plot tend to down-weight locations with a single strongly-enriched element. In

settings where this is undesirable, we could avoid it by scaling the EDLogo plot to match the

standard plot. That is, we could scale the elements at each position by a (position-specific)

constant factor so that the stack height is, like the standard plot, equal to the KLD. However,

51



this would lose the mirror property of the EDLogo plot because the KLD is not symmetric in

p and q. Thus we instead suggesting scaling by the symmetric KL divergence (symmKLD)

between p and q, which highlights strong single-element enrichments while retaining the

mirror property. We call the resulting plot the scaled EDLogo plot.

4.3 Results

4.3.1 Comparison with existing logo plots

Figure 4.2 illustrates the EDLogo plot, and compares it with the standard logo and the

weighted Kullback–Leibler logo (wKL-Logo) plot [125], in four diverse applications.

The first two applications (panels (a) and (b)) are settings where the standard logo plot is

widely used: visualizing transcription factor binding sites (TFBS) [59, 63, 103, 122, 135, 139],

and protein binding motifs [61, 111]. These examples showcase the effectiveness of the

standard logo plot in highlighting enrichments: in our opinion it does this better than

the other two plots, and in this sense the other plots should be viewed as complementing

the standard plot rather than replacing it. These examples also illustrate the differences

between the wKL-Logo and EDLogo plots, both of which aim to highlight depletion as well

as enrichment: the EDLogo plot introduces less distracting visual clutter than the wKL-

Logo plot, producing a cleaner and more parsimonious visualization that better highlights

the primary enrichments and depletions. In particular, for the TFBS example (panel (a),

which shows the primary discovered motif disc1 of Early B cell factor EBF1 from ENCODE

[63]), the EDLogo plot is most effective at highlighting depletion of bases G and C at the

two positions in the middle of the sequence. This depletion is hard to see in the standard

logo because of its emphasis on enrichment, and less clear in the wKL-Logo due to visual

clutter. This depletion pattern is likely meaningful, rather than a coincidence, since it was

also observed in two other previously known motifs of the same transcription factor [59, 103]
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Figure 4.2: Comparison of standard logo plot, weighted KL (w-KL) logo plot
and EDLogo plot on four examples. Panel (a): the transcription factor binding site
of the EBF1-disc1 transcription factor. Panel (b): the binding motif (Motif2 Start=257
Length=11) of the protein D-isomer specific 2-hydroxyacid dehydrogenase, catalytic domain
(IPR006139) from [61, 111]. Panel (c): mutational signature profile of mutations in lym-
phoma B cells, with data from [4]. The depletion of G to the right of the mutation - possibly
occurring due to the rarity of CpG sites owing to de-amination of methylated cytosines - is
clearest in the EDLogo representation. Panel (d): relative abundance of histone modification
sites across various genomic regions in the lymphoblastoid cell line GM06990 (Table S2 in
Koch et al 2007 [64]). These examples illustrate the ability of the EDLogo plot to highlight
both enrichment and depletion, while avoiding unnecessarily visual clutter. The last two
examples also illustrate how our software allows arbitrary strings as elements in a logo plot.
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(see Supplementary Figure S17).

The next two applications (panels (c) and (d) of Figure 4.2) are non-standard settings

that illustrate the use of general strings as “characters” in a logo plot, as well as providing

further examples where the EDLogo plot is particularly effective at highlighting depletion as

well as enrichment.

Panel (c) shows logo plots representing a cancer mutational signature from lymphoma B

cell somatic mutations [4]. Here we follow [115] in representing a mutational signature by

the frequency of each type of mutation, together with base frequencies at the ±2 flanking

bases. We also follow the common convention of orienting the strand so that the mutation

is from either a C or a T , yielding six possible mutation types: C → T , C → A, C → G,

T → A, T → C, T → G. This Figure panel illustrates two important points. First, it

illustrates the flexibility of our software package Logolas, which allows arbitrary strings in

a logo. For all three logo plots (standard, wKL and ED) we use this to represent the six

mutation types by six strings of the form X → Y , and we find the resulting plots easier to

read than the pmsignature plots in [115] (see Supplementary Figure S18 for comparison).

Additionally, it also shows that one can use different sets of permitted strings at different

positions - strings are only used to represent the mutation in the center, while characters

are used to represent the flanking bases. Second, it illustrates a case where, in our opinion,

the EDLogo plot is a better visual summary than the other plots. Specifically the EDLogo

plot best highlights the three primary aspects of this signature: enrichment of C → T and

C → G mutation types; enrichment of T at position -1; and depletion of G at position +1.

Here the depletion of G at +1 may be a bi-product of the enrichment of C → · mutation

types combined with the overall depletion of CpG sites in the genome due to deamination

[105]. For readers interested in other cancer mutation signatures, we provide EDLogo plots

for 24 cancer mutation signatures from [4] in Supplementary Figure S19.

Panel (d) shows logo plots summarizing the relative abundance of 5 different histone
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marks in different genomic contexts (data from lymphoblastoid cell line GM06990, Table S2

(upper) of [64]; background probabilities from Table S2 (lower) of [64]). Note that relative

abundances yield compositional data that can be visualized in a logo plot. Again this

example illustrates the potential to use strings in logo plots. It also represents an example

where the EDLogo and wKL-Logo plots seem more informative than the standard logo plot.

Specifically, the standard logo plot is dominated by the high deviation from background

frequencies at the intergenic, exon and intron regions, and the differences in enrichments

and depletions among regions are difficult to discern. In comparison, the EDLogo and wKL-

Logo plots highlight a number of differences among regions (some of which are also noted in

[64]). For example, both plots highlight the relative enrichment of H3AC and H3K4me3 near

the start and end of genes, and corresponding relative depletion of H4AC and H3K4me1.

Both plots also highlight relative enrichment of H3K4me1 compared with other marks in

the intergenic, exonic and intronic regions; the relative enrichment of H4AC in intronic and

exonic regions, and relative depletion of H3AC in intergenic and intronic regions.

4.3.2 The scaled EDLogo plot

In the first two applications above (panels (a) and (b) of Figure 4.2) we noted the effectiveness

of the standard logo plot in highlighting strong enrichments. This stems from its use of the

KLD to scale stack heights at each position. Motivated by this, we implemented a scaled

EDLogo plot, which combines properties of the EDLogo plot (highlighting both enrichments

and depletions) and the standard plot (scaling stack heights based on KLD). The scaled

EDLogo plot for all four of the examples in Figure 4.2 are shown in Supplementary Figure

S20. The results – particularly panels (a) and (b) – illustrate how the scaled EDLogo plot

tends to emphasize strong enrichments more than the unscaled version, so the scaled version

may be preferred in settings where such enrichments are the primary focus.
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4.3.3 Further Variations

Further variations on the EDLogo plot can be created by replacing log2(pi/qi), in (4.1) with

other functions of (pi, qi), such as the log-odds, log2(pi/(1−pi))− log2(qi/(1−qi)). We have

not found any particular advantage of such variations over the EDLogo plot presented here,

but several such variations are implemented in the software and also illustrated in Supple-

mentary Figure S21. In addition, the EDLogo strategy of using a median adjustment in (4.1)

to reduce visual clutter can be directly applied to derived quantities such as the position

specific scoring matrix (PSSM) [61, 111], commonly used to represent protein binding motifs

(Supplementary figure S22).

4.4 Discussion

We present a new sequence logo plot, the EDLogo plot, designed to highlight both enrich-

ment and depletion of elements at each position in a sequence (or other index set). We

have implemented this plot, as well as standard logo plots, in a flexible R package Logolas,

which offers many other features: the ability to use strings instead of characters; various

customizable styles and color palettes; several methods for scaling stack heights; and ease of

integrating logo plots with external graphics like ggplot2 [134].

The Logolas R package is currently under active development on Github (https://

github.com/kkdey/Logolas). Code for reproducing figures in this paper is available at

https://github.com/kkdey/Logolas-paper. Vignettes and a gallery demonstrating fea-

tures of Logolas are available at (https://github.com/kkdey/Logolas-pages)

4.5 Author contributions

Dey, KK and Stephens, M designed the method. Dey, KK implemented the method. Dey,

KK and Xie, D ran the experiments. Dey, KK and Xie, D produced the figures. Dey, KK
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and Stephens, M wrote the paper.

4.6 Supplementary Methods

Here we detail several alternative options we have implemented for computing the values of ri

when creating an EDLogo plot to compare observed relative frequencies p with background

frequencies q:

• log ratio approach

ri = log2
pi + ε

qi + ε
−median

({
log2

pi + ε

qi + ε
: i = 1, 2, . . . , n

})
(4.8)

• log-odds ratio approach

ri = log2
pi/(1− pi) + ε

qi/(1− qi) + ε
−median

({
log2

pi/(1− pi) + ε

qi/(1− qi) + ε
: i = 1, 2, . . . , n

})
(4.9)

• ratio approach

ri =
pi + ε

qi + ε
−median

({
pi + ε

qi + ε
: i = 1, 2, . . . , n

})
(4.10)

• probKL approach [125]

ri = pi log2
pi + ε

qi + ε
−median

({
pi log2

pi + ε

qi + ε
: i = 1, 2, . . . , n

})
(4.11)

The log ratio approach is our default choice and is the one discussed in detail in the main

text. Just like the log ratio approach, each of the other options also has its corresponding
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scaled version as demonstrated in Supplementary Figure S21.
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Chapter 5

CorShrink : Adaptively Parsimonious Representation of

Correlation Matrices

(with M. Stephens)

5.1 Introduction

Estimating the correlation matrix of a set of variables is one of the fundamental problems

in statistics. The standard estimator, the sample correlation matrix, is not efficient under

certain settings. One such setting is when the dimensionality of the problem (p) considerably

exceeds the number of samples (n). This problem has driven statisticians to suggest various

alternatives - for example - convex combination of sample correlation with one or more target

correlation matrices [66, 69, 70, 107, 126], optimal thresholding of correlations [10, 102] or

LASSO type shrinkage on correlation or inverse correlation matrices [11, 40]. These methods,

though effective, have their own sets of limitations. For example, the thresholding methods

[10, 102] work under specific assumptions of bandedness on the population correlation matrix,

while the LASSO-based models [11, 40] often require extensive cross validation to tune the

shrinkage parameter.

Another setting where the sample correlation matrix is an inefficient estimator is when

there are large scale missing observations in the underlying data matrix. In this case, the cor-

relations between different pairs of variables are computed over different numbers of matched

samples - samples that have observations recorded for both variables of the pair. Conse-

quently, correlations computed over a small number of matched samples are typically less

trustworthy. One solution to this problem is to impute the missing values in the data matrix

[80] and then estimate the correlations based on the imputed data. However, as we show
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below, this approach is subject to imputation error and can create substantial biases in case

of large scale missing data.

Here, we propose a fast simplistic approach called CorShrink that adaptively shrinks the

correlation matrix without requiring the user to perform cross validation and works under

minimal assumptions on population correlation structure. We perform simulation studies to

show that under small n, large p settings and sparse structure assumption on the popula-

tion correlation matrix, CorShrink outperforms other popularly used methods of correlation

shrinkage. Also, CorShrink is flexible in handling data matrices with missing observations

and accounts for the differences in the number of matched samples between variables in a

model based way. As an example application, CorShrink is applied to the donor by tissue

expression data matrix for a gene in the Genotype Tissue Expression (GTEx) project [75],

where the data contains large scale missing observations owing to each donor contributing

only a few tissues. The estimated correlation matrix using CorShrink is found to be less

visually cluttered and more interpretable than the corresponding pairwise sample correlation

matrix. Furthermore, the modeling approach of CorShrink extends beyond sample corre-

lations to other correlation-like quantities such as cosine similarities of vectors and can be

used to generate more accurate similarity measures and word-word similarity rankings from

word2vec models [82, 83].

5.2 Methods

Let (Xnp)N×P denote a data matrix with N samples and P variables, where some values

may be missing (recorded as NA). For each pair of variables i, j ∈ {1, 2, · · · , P} let Rij

denote their (unknown) true correlation, and R̂ij denote the sample correlation computed

using only the samples n that have observed values for both the variables i and j (e.g. using

the option use="pairwise.complete.obs", method = "pearson" in the R function cor).
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Further, let Zij and Ẑij denote the corresponding Fisher Z-transforms [38]:

Zij = Z(Rij) =
1

2
log

(
1 +Rij

1−Rij

)
(5.1)

Ẑij = Z(R̂ij). (5.2)

Under a bivariate normality assumption on each pair of variables, [39] showed that the

observations Ẑij are approximately normal:

Ẑij |Zij ∼ N(Zij , sij) (5.3)

with standard error

sij =

√
1

(nij − 1)
+

2

(nij − 1)2
, (5.4)

where nij > 3 is the number of matched samples, for which both variables i and j are

observed:

nij := #
{
n : Xni 6= NA, Xnj 6= NA

}
. (5.5)

We assume a composite likelihood for these Z-scores Zij .

L ∝
∏

i6=j,i=1(|)P,j=1(|)P
N
(
Zij |ηij , sij

)
(5.6)

where ηij is the population Z-score parameter between variables i and j. Under the CorShrink

model, we assume an unimodal mixture model prior for η in Equation 5.7.

Π(ηij) :=
K∑
k=1

πkFk
(
ηij
)

(5.7)

where Fk’s represent component distributions in the mixture, that are empirically determined

from the data and the πk are the mixing parameters that are estimated by fitting the model.

61



We consider three major class of distributions from which the Fk distributions are drawn.

• Normal : Fk = N
(
0, σ2

k

)
• Uniform : Fk = U (−ak, ak)

• Half Uniform : Fk = U (0, ak) and/or U (−ak, 0)

• Nonparametric : Fk = U (bk, bk+1) for k = 1, 2, · · · , K with b1 < b2 · · · < bk < bk+1 <

· · · bK+1 and bk+1 − bk = c, with K × c greater than the range of the Z scores.

This modeling framework heavily draws from the adaptive shrinkage (ash) method de-

veloped by one of the authors, M. Stephens [119], for shrinking effect sizes in calculating

false discovery rates.

The first three choices of F (normal, uniform and half-uniform) can be used to approxi-

mate any unimodal distribution centered around 0, using a sufficiently large grid of σk or ak.

For practical purposes, The values σk or ak are empirically determined based on the range

of the Fisher’s Z-score values. One can also specify a background mode apart from 0 to

center the component distributions. The nonparametric choice of F on the other hand can

approximate any distribution for sufficiently small c, thereby further increasing the flexibility

of the prior.

The above model (likelihood: Equation 5.6, prior : Equation 5.7) is fitted to obtain the

posterior mean of ηij , η
?
ij , given Rij .

η?ij := E
[
ηij |Rij

]
(5.8)

η?ij are adaptively shrunk estimates of the Fisher Z-scores Zij that account for nij , the

number of matched samples between variables i and j. The smaller the nij , the higher would

be sij in Equation 5.3 and higher would be the level of shrinkage on Zij .
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Next, we reverse transform the Z-scores to get back shrunk estimates of correlation (r?ij).

r?ij :=
exp(2η?ij)− 1

exp(2η?ij) + 1
(5.9)

The matrix R? = ((r?ij))P×P may not be positive definite. So, we select the nearest

positive definite matrix R?? to R?, using the method from [53].

If the variables are not pairwise normally distributed, then the representation of sij as

per Equation 5.3 does not hold. One approach in this context is to use transformations of the

data that are more robust to the non-normality of the data, for example - Box-cox, ranks,

rank-based inverse normal (RIN) transformations [12, 13]. Another approach would be to

estimate sij using Bootstrapping [28, 31] on the samples. The flexibility to use re-sampling

methods as above, extends the scope of the CorShrink method beyond correlations to any

correlation-like quantities -partial correlations, rank correlations, cosine similarities between

word vectors in a word2vec model etc.

5.3 Results

5.3.1 Applications - Genetics

We first illustrate the performance of CorShrink on a data matrix with missing observations.

The Genotype Tissue Expression (GTEx) Project [75] collected gene expression data from ≈

540 subjects spanning across 51 different tissues and 2 cell lines. Different subjects, however,

contributed different number of tissues leading to a large number of missing observations in

the subject by tissue expression data matrix for each gene and hence differences in matched

samples between tissues for computing the tissue-tissue correlation.

Figure 5.1 shows the results from CorShrink fit on the subject by tissue log CPM ex-

pression for PLIN1 (ENSG00000166819 ) gene. Figure 5.1 (a) shows an image plot for the

pairwise sample correlation of expression data between tissues, while 5.1 (c) displays the cor-
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responding CorShrink fit using a mixture of half-uniform prior in Equation 5.7 - a choice that

accounts for the fact that tissues in general are weakly positively correlated. The CorShrink

estimated plot is visually more parsimonious and arguably more easily interpretable. The

empirically fitted prior demonstrated higher concentration around small positive values (see

Figure5.1 (b)). Expectedly the tissue pairs with low numbers of matched samples (almost

white colored points) undergo high shrinkage while those with larger number of matched

samples remain largely unperturbed by CorShrink (see Figure5.1 (d)) . Supplementary Fig-

ure S23 shows, for the same data as Figure 5.1, the results from applying CorShrink using

other prior models - mixture normal prior centered around 0, mixture normal prior centered

around a non-zero mode estimated from the data and non-parametric prior as defined in

Methods.

Figure 5.1 presents a tissue-wide version of CorShrink that tries to shrink the tissue-

tissue correlations for PLIN1 gene based on the expression data for that gene alone. One may

however consider determining the amount of shrinkage by leveraging information across all

genes and to address this, we define a new genewide version of CorShrink. Under this model,

for each tissue pair, we feed into Equation 5.6, the vector of pairwise correlation in expression

for this tissue pair across all genes, together with another equal-sized vector, each of whose

elements equals the number of matched samples for the tissue pair. Supplementary Figure

S24 shows the image plots for both the tissuewide and genewide versions of CorShrink. Both

these methods produce results that are similar to each other, but are less visually cluttered

than the sample correlation estimate.

One characteristic feature of the tissue-tissue correlation structure of the PLIN1 gene is

the high correlation of expression in brain tissues. We observe this pattern in many genes,

but there are exceptions. Supplementary Figure S25 presents the results of tissue-wide and

gene-wide versions of CorShrink along with the pairwise sample correlation matrix for three

different genes - HBB, MTURN and VSIR. VSIR correlation profile is similar to PLIN1,
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HBB gene exhibits high correlation in expression nearly across all tissues, while the MTURN

gene exhibits low correlation in expression across all tissues.

One common way of dealing with missing data in statistics is to impute them. Factor

analysis methods - such as SoftImpute [49, 80] and FLASH [133] attempt to fill in the

missing values based on a lower dimensional representation of the data matrix estimated

over the recorded observations. Supplementary Figure S26 presents, for the same PLIN1

gene expression data, a comparison of the pairwise tissue-tissue correlation matrix (Fig

2a) and the corresponding tissue-wide CorShrink matrix (Fig 2b) with correlation matrix

computed after imputing the missing observations in the data matrix using SoftImpute (Fig

2c) and FLASH (Fig 2d). The correlation matrices for both the SoftImpute and FLASH

imputed data show an overall upward bias in their values - possibly driven by the large scale

missing observations in the data.

5.3.2 Simulation studies

Accounting for missing observations in the data matrix in an adaptive way for estimating the

correlation matrix is the primary motivation behind using CorShrink. However, CorShrink

is a very competent correlation shrinkage method even when there are no missing observa-

tions in the data matrix. Of particular interest are settings with small n (number of samples)

and large p (number of features). Under various choices of (n, p), with the ratio n/p vary-

ing from 0.1 to 10, we performed simulation experiments to compare the performance of

CorShrink against other popular correlation shrinkage methods - GLASSO at different tun-

ing parameters [40, 81, 136], soft thresholding estimator PDSCE [101] and corpcor [106, 107].

We considered three types of underlying correlation structure to simulate from - a Hub

correlation matrix (sparse correlation, sparse precision), a Toeplitz correlation matrix (sparse

correlation, non-sparse precision) and a banded precision matrix (non-sparse correlation,

sparse precision). See Supplementary Figure S27 for a demonstration of these correlation
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and precision matrix structures.

We generated multivariate normally distributed data with 0 mean and correlation struc-

ture determined as above. The number of features were fixed at p = 100 and four different

values of n were considered, n = 10, 50, 100, 1000. Figure 5.2 presents the box plot of the

Correlation Matrix Distance (CMD) [50] between the population correlation matrix and the

estimated matrices obtained using CorShrink (with normal mixture prior centered around

0), GLASSO at different tuning parameters, PDSCE and corpcor methods, together with

the sample correlation matrix. Compared to the other approaches, the estimated matrix

using CorShrink was observed to be closer (in CMD) to its population counterpart for the

Hub and Toeplitz correlation models. For the sparse banded precision matrix case, GLASSO

estimator performs better than the other estimators in small n, large p settings. Supplemen-

tary Figure S28 presents results for the same analysis, but using Frobenius distance metric

instead of the CMD distance.

Figure 5.3 presents a second validation of performance of different estimators by com-

paring their trends in sorted eigenvalues of the estimated correlation matrices with that of

the population correlation matrix. For the Toeplitz and the Hub correlation models, the

CorShrink estimator appears to follow the population eigenvalues more closely than other

methods for each choice of n and p. The results of these simulation studies (Figures 5.2 and

5.3) seem to suggest that for small n, large p settings, with structured population correlation

matrix, CorShrink outperforms the other methods, but for sparse precision models, GLASSO

is the preferred choice. This is along expected lines, becauseCorShrink is more a correlation

shrinkage model, whereas GLASSO is specifically designed for sparse representation of the

precision matrix.
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5.3.3 Applications - Natural Language Processing

As discussed in the Methods section, CorShrink can be flexibly applied to other correlation-

like quantities. One such application is in shrinking cosine similarities between vector repre-

sentations of words, obtained from a word2vec [83] or GLOVE [87] model. The aim here is

to generate more robust estimates of the cosine similarities between words, less affected by

author, context or event specific biases.

As a case study, we considered text data from the monthly issues of the Ebony magazine

in 1968. 1968 marked a turning point in American history with the assassination of Dr.

Martin Luther King and the subsequent end to the civil rights movement and the Ebony

magazine issues provided a reflection of those times. We fitted word2vec model on the

combined text data from these issues, obtained vector representations and computed cosine

similarities between words based on the vector representations. These cosine similarities are

treated as correlation like quantity in the CorShrink model.

Unlike correlations, there is no obvious way to compute standard errors of the Fisher

Z-scores for these cosine similarities, which made us resort to re-sampling methods. We

performed Bootstrapping [28, 31] on the 12 issues, fitted word2vec model on the pooled

text from the re-sampled articles and computed cosine similarities of our chosen food-related

words from their model vector representations. For each pair of words, we computed a

re-sampling standard error of the Fisher Z-scores from 100 re-samples.

Two word sets we were interested in were {martin, luther, king} and {civil, rights}. For

each word set of interest, we selected top 1000 words close in context to the words in these

word sets based on cosine-similarities from the word2vec model fit and then combined these

words. Next, CorShrink was applied to these word pairs with re-sampling standard errors

computed as above. Figure 5.4 presents the original and CorShrink cosine similarity patterns

along with the top 25 words contextually similar to our word sets of interest based on cosine

similarities and CorShrink estimated similarities.

67



The word rankings after CorShrink adjustment seem to give higher preference to terms

that are broadly contextually similar to the words in the word sets. For example words like

peace, civil and rights show up among the top 25 words close to the word set martin, luther,

king after CorShrink adjustment but do not show up before the adjustment. Also, a term

like apostle which seems strongly connected to this word set before CorShrink (ranked 4)

disappears from top 25 words list after adjustment. Upon investigation, we found this word

to be used primarily in the context of eulogizing Dr. King following his death in the May

1968 edition issue, and re-sampling on the articles managed to remove this bias. Similarly,

the top 25 words contextually close to civil, rights before CorShrink adjustment seem to

consist of names like andrew and randolph, which are apparently names used in the context

of civil rights in specific issues and also, surprisingly a word like cowboys which is quite

distant in context from the word set of interest. The CorShrink adjustment cleans out all

these words from the top 25 words list and the terms included instead are again broadly

related to civil and rights - like militant, war, freedom etc.

5.4 Discussion

CorShrink is an extension of the adaptive shrinkage (ash) framework by [119] to the set-

ting of correlation matrix shrinkage. Unlike other correlation matrix estimation approaches

(corpcor, GLASSO), CorShrink can adjust the degree of shrinkage based on the missing

observations in the data (see Figure 5.1), and even with no missing data, outperforms the

other methods when the underlying population correlation matrix is well-structured (see

Figure 5.2) Also, while other methods take only a data matrix as input, CorShrink has the

flexibility to take as input either a vector/matrix of correlations along with the information

of matched samples, which is what extends the flexibility of this approach to shrinking cosine

similarities between word pairs from text data. In terms of speed, CorShrink is comparable

to corpcor, PDSCE [106] and glasso [40], but unlike glasso and PDSCE, does not require ex-
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tensive training of the tuning parameter using cross-validation. As argued in the Results, the

current implementation of CorShrink is not ideal for estimating inverse correlations, and our

future works would be directed towards improving the efficiency of CorShrink in estimating

precision matrices. Also, when the population correlation matrix is a noisy version of a lower

dimensional structured matrix, CorShrink is not well suited to recover the lower dimensional

structure. Future attempts would focus on combining CorShrink with factor analysis type

approaches to recover this lower dimensional structure. CorShrink is currently available as a

R package on Github https://github.com/kkdey/CorShrink and the codes for the analysis

presented in this paper are available at https://kkdey.github.io/CorShrink-pages/.

5.5 Author contributions

Dey, KK and Stephens, M designed the method. Dey, KK implemented the method. Dey,

KK ran the experiments. Dey, KK produced the figures. Dey, KK and Stephens, M wrote

the paper.
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Figure 5.1: (a) The image plot of the pairwise correlation matrix between tissue pairs for the
log CPM expression data of the PLIN1 gene. (b) The probability and cumulative density
function plots for the empirically estimated mixture of half-uniform prior used to shrink the
correlations in CorShrink. The black dot represents the prior probability mass of observing
0 correlation. (c) The image plot the estimated correlation matrix due to CorShrink. The
representation is visually more parsimonious and arguably more interpretable than (a). (d)
plots the pairwise sample correlation values against the CorShrink fitted estimates for each
tissue pair in a scatter plot and colors each point based on the number of matched samples for
the corresponding tissue pair. Expectedly the pairs with low numbers of matched samples
(light colored points) undergo high shrinkage while those with larger number of matched
samples remain largely unperturbed by CorShrink.

70



Hub correlation Toeplitz correlation Banded precision

Figure 5.2: Box plot of the Correlation Matrix Distance (CMD) [50] between population
correlation matrix and the estimated matrix from different methods - corpcor [106, 107],
CorShrink, PDSCE [101], GLASSO [40] at different tuning parameters and the empirical
pairwise correlation matrix, for different structural assumptions on the underlying population
correlation - Hub structure, Toeplitz structure and a banded precision matrix, see Supple-
mentary Figure S27. CorShrink outperforms the other methods for the structured/sparse
covariance models (Hub and Toeplitz), with PDSCE being closest to CorShrink in perfor-
mance.
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Hub correlation Toeplitz correlation Banded precision

Figure 5.3: Plots of sorted square-root eigenvalue trends of the population correlation matrix
against those of estimated correlation matrices using different methods - corpcor [106, 107],
CorShrink, PDSCE [101], GLASSO [40] at different tuning parameters and the empirical
pairwise correlation matrix, for different structural assumptions on the underlying population
correlation - hub structure, Toeplitz structure and a banded precision matrix structure, see
Supplementary Figure S27. The trend of sorted eigenvalues for CorShrink follow that of the
original matrix closely for the Hub and the Toeplitz models.
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after CorShrink

before CorShrink

Words close in context to  
(martin, luther, king)

before CorShrink

after CorShrink

Words close in context to  
(civil, rights)

martin:luther
king:luther

stokely:carmichael

evers:medgar

madame:zuch

martin:king

civil-rights

crispus:attucks
bunker:hill

stokely:rap
valley:forge birth:control

Figure 5.4: We extracted the top 1000 contextually close words to each of the two word sets
of our interest - {martin, luther, king} and {civil, rights} based on word2vec analysis of the
monthly issues of the Ebony magazine in 1968 and combined these two sets of words. For
each pair of words in the combined word set, we plotted the cosine similarities before and
after the CorShrink adjustment, colored by how many times they occurred in the texts. We
report the top 25 words contextually close to the word sets of interest before and after the
CorShrink adjustment. The CorShrink adjustment seems to remove terms that are specific
to a few texts or specific to certain events and instead incorporate more broadly similar
words to our word sets of interest in the top 25 lists. Examples are discussed in depth in the
Results section.

73



Appendix A

Supplementary Figures
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Figure S1: Structure plot of GTEx V6 tissue samples for (a) K = 5, (b) K = 10,
(c) K = 15, (d) K = 20. Some tissues form a separate cluster from the other tissues
from K = 5 onwards (for example: Whole Blood, Skin), whereas some tissue only form a
distinctive subgroup at K = 20 (for example: Arteries).
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Figure S2: Top five principal components (PC) for GTEx V6 tissue samples.
Scatter plot representation of the top five PCs of the GTEx tissue samples. Data was
transformed to log2 counts per million (CPM).
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Figure S3: Comparison between GoM model and hierarchical clustering under
different scenarios of data transformation. We used GTEx V6 data for model per-
formance comparisons. Specifically, for every pair of the 53 tissues, we assessed the ability
of the methods to separate samples according to their tissue of origin. The subplots of
heatmaps show the results of evaluation under different scenarios. Filled squares in the
heatmap indicate successful separation of the samples in corresponding tissue pair compar-
ison. (a) Hierarchical clustering on log2 counts per million (CPM) transformed data using
Euclidean distance. (b) Hierarchical clustering on the standardized log2-CPM transformed
data (transformed values for each gene was mean and scale transformed) using the Euclidean
distance. (c) GoM model of K = 2 applied to counts. (d) Hierarchical clustering on counts
data with the assumption that, for each gene the sample read count cng has a variance c̄g+1.
(e) Hierarchical clustering applied to adjusted count data. Each gene has a mean expression
value of 0 and variance of 1. The GoM model with K = 2 is able to separate samples of
different tissue of origin, better than hierarchical cluster methods.
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Figure S4: GTEx brain PCA, t-SNE and MDS.
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Figure S5: GTEx brain PCA, t-SNE and MDS.
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1

(a) hierarchy thin 0.01 (b) GoM thin 0.01

(c) hierarchy 0.001 (d) GoM thin 0.001

Figure S6: A comparison of accuracy of hierarchical clustering vs GoM on thinned
GTEx data, with thinning parameters of pthin = 0.01 and pthin = 0.001. For each
pair of tissue samples from the GTEx V6 data we assessed whether or not each clustering
method (with K = 2 clusters) separated the samples according to their tissue of origin, with
successful separation indicated by a filled square. Thinning deteriorates accuracy compared
with the unthinned data (Fig 2), but even then the model-based method remains more
successful than the hierarchical clustering in separating the samples by tissue or origin
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Ddc

a b

Figure S7: Deng et al (2014) PCA, tSNE, MDS and dendrogram plots for hier-
archical clustering.
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Figure S8: Additional GoM analysis of Deng et al (2014) data including blastocyst
samples and 48 blastocyst marker genes. We considered 48 blastocyst marker genes (as
chosen by Guo et al., 2010) and fitted GoM model with K = 3 to 133 blastocyst samples.
In the Structure plot, blastocyst samples are arranged in order of estimated membership
proportion in the Green cluster. The panel located above the Structure plot shows the
corresponding pre-implantation stage from which blastocyst samples were collected. The
heatmap located below the Structure plot represents expression levels of the 48 blastocyst
marker genes (log2 CPM), and the corresponding dendrogram shows results of hierarchical
clustering (complete linkage). The table on the right of the expression heatmap displays
gene information, showing, from left to right, 1) whether or not the gene is a transcription
factor, 2) the driving GoM cluster if the gene was among the top five driving genes, and 3)
the featured cell type (TE: trophecoderm, EPI: epiblast, PE: primitive endoderm) that was
found in Guo et al., 2010.
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Figure S9: Sparse Factor Analysis loadings visualization of GTEx V6 tissue sam-
ples. The colors represent the 20 different factors. The factor loadings are presented in a
stacked bar for each sample. We performed SFA under the scenarios of when the loadings
are sparse (left panel) and when the factors are sparse (right panel).
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Figure S10: Sparse Factor Analysis loadings visualization of GTEx brain tissue
samples. The colors represent the 6 different factors. The factor loadings are presented in
a stacked bar for each sample. We performed SFA under the scenarios of when the loadings
are sparse (left panel) and when the factors are sparse (right panel).
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Figure S11: Sparse Factor Analysis loadings visualization of mouse pre-
implantation embryos from Deng et al., (2014). The colors represent the 6
different factors. The factor loadings are presented in a stacked bar for each
sample. We performed SFA under the scenarios of when the loadings are sparse
(left panel) and when the factors are sparse (right panel).
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Figure S12: aRchaic grades of membership for the example in Fig 4.2 corresponding to 3
different values of K (K = 4, 5, 6). Higher values of K distinguish among the ancient studies,
reflecting lab and study specific biases.
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Figure S13: We apply aRchaic with K = 6 on the data from Fig 3.4. In addition to
separating out the ancients from the moderns, aRchaic now distinguishes between moderns
individuals based on library kit (Nextera vs Tru-seq.)
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Cluster

Cluster

Moderns
[n=25]  
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[n=25]  

Figure S14: aRchaic plot forK = 2 on the combined data of 25 moderns and 25 ancients from
[73]. aRchaic clearly distinguishes the moderns from the ancients. The ancients are primarily
presented by the blue cluster. This cluster shows an enrichment of C → T mismatches and
depletion of T → C mismatches with respect to modern background, as well as enrichment
of G and depletion of T at the 5’ strand break. The red cluster shows a blip at 12th position
from the end of the read, the explanation for which is provided S15.
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Figure S15: The frequency of all mismatch types plotted against the position of the read
(from the 5’ end) for each of the 25 moderns samples in [73]. Each sample was prepared by
one of two library kits: Nextera and True-Seq. Most the samples prepared with the Nextera
kit show a spike in frequency at the 12th position from the 5’ end of the read
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Figure S16: Illustration of “mirror property” of EDLogo. Panel (a): EDLogo plot of
the position weight matrix (PWM) of the primary discovered motif disc1 from [63] of the
EBF1 transcription factor against uniform background. Panel (b):EDLogo plot of a uniform
PWM against the PWM of EBF1 as background. That is, panels (a) and (b) are comparing
the same two PWMs, but differ in which one they treat as the “background”. The EDLogo
plot obeys the mirror property, in that (b) is a mirror image of (a) (modulo the orientation
of the symbols, which are translated and not reflected).
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Figure S17: EDLogo plots for six different motifs of the EBF1 transcription factor.
The PWMS for known1 and known2 come from the TRANSFAC database [135]; known3
from the JASPAR database [103]; known4 from [59]; disc1 and disc2 were discovered by the
ENCODE project [63]. Three of the motifs (known3, known4 and disc1 ) show depletion of
G and C in the middle of the binding site.
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Figure S18: Comparison of the EDLogo plot (a) with pmsignature [115] plot (b)
for visualizing cancer mutational signatures. Both plots show a signature of lymphoma
B cell from [4]. The EDLogo plot highlights the depletion of G at the right flanking base
more clearly than does the pmsignature plot. The use of strings to represent mutations in
the center is arguably more intuitive than the pmsignature representation.

91



ALL_2

-1

0

1

3

4

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Bladder_2

-1

0

1

2

3
E

n
ri

c
h

m
e

n
t 
S

c
o

re

Breast_1

-1

0

1

3

4

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Cervix_1

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Head-and-Neck_2

-1

0

1

3

4

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Kidney-Papillary_2

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Lung-Adeno_2

-1

0

1

3

4

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Lung-Squamous_1

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Lymphoma-B-cell_2

-1

0

2

3

4

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Myeloma_2

-1

0

1

3

4

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Pancreas_2

-2

-1

0

1

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re
Thyroid_1

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Head-and-Neck_1

-1

-1

0

1

2

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Lung-Adeno_3

-1

0

0

1

2

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Lung-Squamous_2

0
0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Lung-Small-Cell_1

-1

0

0

1

2

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Colorectum_4

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Uterus_1

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Colorectum_3

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Uterus_2

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Head-and-Neck_3

0
0

2

3

4

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Melanoma_3

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Lung-Small-Cell_2

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Stomach_1

-1

0

1

2

3

E
n

ri
c
h

m
e

n
t 
S

c
o

re

Figure S19: EDLogo plots for the mutation signature profiles of 24 different cancer types
from [4].
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Figure S20: Illustration of scaled EDLogo plot on examples from Figure 4.2. The
standard logo and unscaled EDLogo plots are repeated here to ease comparisons. The scaled
EDLogo plot highlights strong enrichments more than the unscaled version and may be
preferred in settings when enrichments are the primary focus.
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Figure S21: Illustration of various options for EDLogo plot. Each plot shows an ED-
Logo plot for a specific binding motif (Motif2 Start=257 Length=11) of the protein D-isomer
specific 2-hydroxyacid dehydrogenase, catalytic domain (IPR006139) against a uniform back-
ground. The plots illustrate the use of several different scoring schemes (log ratio, log odds
ratio, ratio and probKL) with and without scaling by the symmetric Kullback-Leibler diver-
gence. See Supplementary Methods for details on the scoring schemes. (Note that only the
log ratio and log odds ratio scoring schemes satisfy the “mirror property”.)
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Figure S22: Illustration of median adjustment of a position specific scoring matrix
(PSSM). The PSSM shown here is for the binding motif of the protein D-isomer specific 2-
hydroxyacid dehydrogenase, catalytic domain (IPR006139) (Motif2,Start=257, Length=11).
The median adjusted PSSM Logo (bottom panel) is arguably less cluttered than the non-
adjusted version (top panel).
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(a) (b)

(c) (d)

Figure S23: Application of CorShrink on the donor by tissue expression data for the PLIN1
gene using different mixture model priors than the half-uniform mixture prior used in Fig-
ure 5.1. (a) presents the image plot for the pairwise sample correlation plot, (b) presents
the CorShrink model fit with mixture normal prior centered around 0, (c) presents the
CorShrink model fit with mixture normal prior centered around an estimated mode, (d)
presents the CorShrink model fit using an essentially non-parametric prior (see Methods for
definition of these models).
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genewide CorShrink tissuewide CorShrink

Figure S24: Image plots of the estimated correlation matrices using (a) gene-wide CorShrink
and (b) tissue-wide CorShrink, both with half-uniform mixture model prior on the subject
by tissue expression matrix data for the PLIN1 gene. Both representations are visually
broadly equivalent.
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Figure S25: Image plots of the estimated correlation matrices using both tissue-wide
CorShrink and gene-wide CorShrink, using half-uniform mixture model prior, on the subject
by tissue expression data for three different genes - HBB, MTURN and VSIR. HBB corre-
lation patterns are similar to PLIN1 in Figure 5.1 with high correlation among the Brain
tissues and negligible correlation among other tissues. MTURN exhibits low correlation
across all tissues and VSIR exhibits high correlation across almost all the tissues.
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pairwise correlation tissue-wide CorShrink

correlation on Softimpute data correlation on FLASH-imputed data

(a) (b)

(c) (d)

Figure S26: Comparison of the tissue-tissue correlation matrix of the log CPM expression
data for PLIN1 gene (a) and the estimated correlation matrix from our proposed CorShrink

method (b) with respect to correlation matrices obtained after imputing the missing observa-
tions in the data matrix by SoftImpute (c) and FLASH (d). CorShrink seems to capture the
subtle structure in the tissue tissue correlations and generate a visually more interpretable
representation than the imputation mechanisms.
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Hub correlation

Toeplitz correlation

Banded precision
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color  
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Figure S27: A demonstration of the population correlation and inverse correlation structure
from which simulation studies were carried out.
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Hub correlation Toeplitz correlation Banded precision

Figure S28: Box plot of the Frobenius distance between population correlation matrix and
the estimated matrix from different methods - corpcor [106, 107],CorShrink, PDSCE [101],
GLASSO [40] at different tuning parameters and the empirical pairwise correlation ma-
trix, for different structural assumptions on the underlying population correlation - Hub
structure, Toeplitz structure and a banded precision matrix, see Supplementary Figure S27.
CorShrink outperforms the other methods for the structured/sparse covariance models (Hub
and Toeplitz), with PDSCE being closest to CorShrink in performance..
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