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Let us toss our umbrella, said Mercier. It will fall in a certain way, according to laws of

which we know nothing. Then all we have to do is press forward in the designated direction.

— Sam Beckett, Mercier and Camier (1946)
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ABSTRACT

Matrix factorization methods are commonly used to explore structure in multivariate data.

When the structure can be expected to have a sparse representation, then a sparsity-inducing

method will often be preferred. Empirical Bayes matrix factorization (EBMF), a recent

approach that uses the observed data to estimate priors, can adaptively model sparsity

and thus yield representations with interpretable components while also performing well on

inferential tasks. Further, since �tting the EBMF model can be reduced to solving a series of

empirical Bayes normal means (EBNM) subproblems, which can be relatively easily solved

for a wide variety of prior families � sparse and otherwise �, the approach is very general.

The dissertation extends the reach of EBMF in several ways. The �rst chapter describes

the R packageebnm , which I developed in order to provide a uni�ed interface for e�ciently

solving the EBNM problem using a range of prior families. Existing packages are harnessed

when practical; in other cases, solutions are implemented from scratch. The second chapter

details my implementation of the EBMF algorithm, �ashier , which was designed to handle

much larger datasets and o�er more �exibility than the original implementation of EBMF.

In particular, I show that EBMF can yield insight into single-cell RNA sequencing data,

outperforming more commonly used methods on tasks such as rare cell type detection in spite

of the fact that the EBMF model is misspeci�ed for count data. The �nal chapter considers

data with an underlying tree-like structure, with particular attention to population genetics

data. In addition to providing theory that helps to elucidate the kind of factorization that

one should be looking for, I propose a tailored EBMF method that can successfully identify

tree-like structure in both simulated and real datasets.
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INTRODUCTION

I started working on empirical Bayes matrix factorization (EBMF) in early 2018, shortly

after Wei Wang and Matthew Stephens uploaded the �rst version of their EBMF paper to

arXiv (Wang and Stephens [2021]). They had named their software implementation�ashr ,

an acronym for �factors and loadings by adaptive shrinkage inR.� In e�ect, the EBMF model

is:

Y = LF T + E (1)

` ik � g(k)
` 2 G(k)

` (2)

f jk � g(k)
f 2 G(k)

f ; (3)

whereL is a n � K matrix of �loadings,� F is a p � K matrix of �factors,� and E is a n � p

matrix of normally distributed errors. The column-wise priorsg(k)
` and g(k)

f are estimated

via empirical Bayes from among prior familiesG(k)
` and G(k)

f , and Wang and Stephens were

particularly interested in the families of �adaptive shrinkage� or �ash� priors introduced by

Stephens in a previous paper (Stephens [2017]). In brief, ash priors are families of scale

mixture distributions (for example, scale mixtures of normals) with mixture proportions to

be estimated. By using ash priors, EBMF can learn about the scales of the loadings and

factors from the data, and can �adaptively� shrink an estimate of̀ ik or f jk depending on

which component it most likely �belongs� to. In particular, EBMF can adaptively model

sparsity for columns ofL and F, which can help to produce highly interpretable results.

As I later discovered, the software also contains a somewhat concealed reference to pho-

tography. The original implementation included a functionflash_fill that �lls in missing

data in Y with posterior means estimated using EBMF. I wanted to remove the function

from the interface, since the same can be accomplished via a single line ofR code:

is.na(Y) <- f$ldf[is.na(Y)],
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wheref is the �tted flash object. Matthew Stephens resisted, however, on the grounds that

he was fond of the �photography joke.� Fill �ash is a technique whereby a photographer uses

arti�cial light to reduce unwanted shadows (missing data, in a sense). It can be useful when,

for example, a background is brightly illuminated by sunlight but the subject is shaded. The

photographic metaphor is also apt for EBMF more generally. Just as a �ash bulb illuminates

otherwise obscure aspects of things as they appear,�ashr casts light on the structure of

matrix data by revealing interpretable factors. The ��ash� of flash yields an image that,

like a good photograph, makes sense of a messy reality.

When I �rst started working with �ashr , however, it felt � with apologies to Wei

and Matthew � more like a disposable camera than a professional-grade apparatus. Some

aspects of EBMF seemed less than perfectly understood; parts of�ashr were clunky; and,

in general, it lacked the �exibility and range of settings that I required for my applications.

In short, �ashr wasn't �ashy enough. A portion of my project thus consisted in software

engineering: building a bigger and better camera with more polished and various lenses.

The other portion was to show what kinds of pictures could be taken: my implementation,

�ashier , opens EBMF up to not only new subject matter (much larger datasets) but also

new techniques, such as semi-nonnegative matrix factorization and co-occurrence matrix

factorization. The thesis that follows is thus part technical manual and part photo album.

In Chapter 1, I revisit the empirical Bayes normal means (EBNM) problem, which is

central to EBMF in the same way that shutter speed or aperture is central to photographic

technique. The EBNM problem can be written:

x i � N
�

� i ; s2
i

�
(4)

� i � g 2 G; (5)

wherex is a vector of observations with known standard errorss, � is a vector of unknown

means, andg is to be estimated via empirical Bayes from among some family of priorsG.
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As Wang and Stephens noticed, the EBMF model can be �t by solving a series of EBNM

problems. For example, in the rank-one case, where

Y = ` f T + E (6)

` i � g̀ 2 G` (7)

f j � gf 2 Gf (8)

eij � N
�

0; � 2
ij

�
; (9)

�xing f yields

yij

f j
� N

 

` i ;
� 2

ij

f 2
j

!

(10)

` i � g̀ 2 G` ; (11)

which is an EBNM problem but with p observations for each �mean�̀ i . In essence, the

rank-one flash algorithm proceeds by �xing f and solving an EBNM problem to estimate

` , then �xing ` and solving an EBNM problem to estimatef , and so on until convergence.

The choice of prior familiesG̀ and Gf can have dramatic e�ects. Prior families can

encode assumptions about, for example, sparsity, tail weight, and nonnegativity, and can

range in �exibility from the one-parameter family of zero-mean normal distributions to the

nonparametric family of all distributions. Like a fast shutter speed, the family of all dis-

tributions can capture very �ne-grained information about a prior distribution, while the

family of zero-mean normals blurs details. And just as the appropriate choice of shutter

speed depends on the application (fast for sporting events; slow for night photography), so

will the choice of prior family. To take full advantage of the range of possibilities o�ered by

di�erent prior families, I developed theR packageebnm , which provides a uni�ed interface

for previously available packages that solve the EBNM problem as well as providing fast
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and stable implementations for useful prior families that (to my knowledge) were not readily

available.

With these fundamentals in place, Chapter 2 discusses my EBMF implementation,�ashier .

The application that I had most particularly in mind when I developed the package was

single-cell RNA sequencing (scRNA-seq) data, a task to which�ashr proved unequal: due

to ine�ciencies in the implementation, larger scRNA-seq datasets easily exhausted 64 GB of

memory, and smaller datasets took an unnecessarily long time to �t. Fitting these datasets

required core changes to the implementation, including the modularization of matrix oper-

ations and the use of acceleration techniques to reduce computational time. In addition to

describing these changes, I introduce semi-nonnegative EBMF, which uses a family of priors

with nonnegative support for the loadingsL and a family of priors with support on the

reals for the factorsF (or vice versa). I conclude the chapter with a pair of photographs:

I �t two scRNA-seq datasets using both semi-nonnegative and vanilla EBMF in order to

illustrate some of the advantages of EBMF over competing methods like topic modeling and

GLM-PCA, as well as showing how semi-nonnegative EBMF can enhance interpretability

over vanilla EBMF.

Chapter 3 takes fullest advantage of the newer, �ashier apparatus. The primary object

of the chapter is to understand data for observations coming from a set of populations whose

relations can be described by a rooted, binary tree. Since not all matrix factorizations

are equally informative about population structure, and since di�erent factorizations are

more or less easy to ��nd� via optimization, some theory is required in order to de�ne

a factorization that both reveals population structure and has a decent chance of being

discovered via a sparse matrix factorization method such as EBMF. I call my factorization

of choice the �divergence factorization,� and I propose a tailored method for using EBMF to

�nd it. Additionally, I develop theory for factorizing the co-occurrence matrix YY T rather

than the full data matrix Y : although the model is less well speci�ed, the co-occurrence
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matrix is often much smaller. Further, there are technical reasons that make it possible

for a factorization of the co-occurrence matrix to succeed where the full factorization fails.

Both of these methods (�tree-EBMF� and �tree-EBcovMF�) would be di�cult to execute

without the newer implementation, as they require a considered choice of prior family, �exible

initialization, the ability to �x and un�x speci�c loadings, and extreme �exibility in the order

of operations. I conclude by using the methods to illuminate a pair of population genetics

datasets: a set of North American wolf genomes, as well as data from the 1000 Genomes

Project, which includes genome data for individuals from 26 human populations.
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CHAPTER 1

THE EBNM PROBLEM

1.1 Introduction

Given n observationsx i with known standard errorssi , the normal means model assumes

that

x i
ind.� N (� i ; s2

i ) (1.1)

with �true means� � i to be estimated. The maximum likelihood estimate of� i is simply

x i . A key Bayesian insight, however, is that the observations supply information not only

about the individual means, but also about how the means, taken together, are distributed.

Speci�cally, the empirical Bayes (EB) approach makes the additional modeling assumption

� i
ind.� g 2 G; (1.2)

where the prior g is to be estimated from among some family of distributionsG that is

speci�ed in advance.

I refer to the problem of estimatingg 2 G in order to perform inference on the means

� i as the �empirical Bayes normal means� (EBNM) problem. In Section 1.2, I give a brief

history of the EBNM problem, describe several applications in which it crucially arises,

and cite a number of software packages that can be used to solve it. These packages typ-

ically �x the choice of G or restrict it to suit a particular application: as a result, some

simple but useful choices ofG lack an implementation. To bridge these gaps, I developed

the R packageebnm , which provides a uni�ed interface for e�ciently solving the EBNM

problem under a wide variety of distributional assumptions. I leverage existing packages

where possible; in other cases, solutions are implemented from scratch. Section 1.3 pro-

vides implementation details and develops theory that can help guide the user in choosing

6



settings for previously implemented prior families. In Section 1.4, I use simulated data to

compare di�erent prior families G. Often, the choice of prior family must weigh trade-o�s

between speed and �exibility, and a �correct� choice rarely exists for a given application.

Finally, Section 1.5 illustrates the use ofebnm on two real-data examples, Rubin's eight

schools data (Rubin [1981]) and a dataset of eQTLs derived from GTEx project data (Lons-

dale et al. [2013]). Packageebnm is available athttps://github.com/stephenslab/ebnm .

Figures and results from this chapter can be reproduced by following the instructions at

https://github.com/willwerscheid/ebnm-paper , with some variation to be expected in

the timing results.

1.2 Background and Applications

Stein [1956] famously discovered that under quadratic loss, the maximum likelihood estimate

�̂ i = x i is an inadmissible solution to the normal means problem (Equation 1.1) whenn � 3.

James and Stein [1961] subsequently gave an explicit formula for a shrinkage estimator that

dominates the MLE. As Efron and Morris [1973] showed, a lightly modi�ed version of the

James-Stein estimator (the so-called �positive-part James-Stein estimator�) can be derived

via an empirical Bayes approach that takes the prior family to be the conjugate family of

zero-mean normal distributions

Gnorm :=
n

g : g � N (0; � 2) for some� 2 � 0
o

: (1.3)

Estimating ĝ 2 Gnorm via maximum likelihood is straightforward: indeed, when all standard

errors si are identical, the problem has a closed-form solution.

In applications, however, one is often interested in scenarios where the means vector�

is known to be sparse. In such cases, prior families that are able to model sparsity directly

are preferable. In wavelet denoising, for example, one assumes that a signal has a sparse
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representation within a suitable wavelet basis. This assumption can be modeled by putting a

spike-and-slab prior on the wavelet coe�cients� � that is, a mixture distribution consisting

of two components, one a point mass at zero (the �spike�) and the other belonging to some

family of continuous distributions F that are symmetric and unimodal at zero (the �slab�).

Within a fully Bayesian framework, an early popular choice was the point-normal family

Gpn :=
n

g : g � � 0� 0 + (1 � � 0)N (0; � 2) for some0 � � 0 � 1; � 2 � 0
o

: (1.4)

More recently, Johnstone and Silverman [2005] showed that empirical Bayes methods enjoy

better theoretical guarantees whenF is taken to be a family of distributions whose tails are

exponential or heavier. Their companionR packageEbayesThresh implements both the

point-Laplace family

Gpl := f g : g � � 0� 0 + (1 � � 0)Laplace(a) for some0 � � 0 � 1; a � 0g (1.5)

and a family of priors in which the slab component has Cauchy-like tails.

A second application in which assumptions about sparsity have proven useful is false

discovery rate (FDR) control. In genetics, for example, one often measures e�ect sizes for

thousands of genes (say, di�erences in gene expression between cancerous and non-cancerous

cells) and would like to disentangle null and non-null e�ects. A natural approach is to put a

spike-and-slab prior on the e�ects and then, via a latent variable representation, estimate for

each e�ect the posterior probability that it is generated from the non-null (slab) component.

Speci�cally, if G is a spike-and-slab prior family, then it is equivalent to write the prior
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� i � g 2 G as:

yi � Bernoulli (1 � � 0) (1.6)

� i
�
� yi = 0 � � 0 (1.7)

� i
�
� yi = 1 � f 2 F : (1.8)

In this representation, the �local false discovery rate� (Efron [2008]) is the posterior proba-

bility that e�ect i is null:

fdr(i ) := P
�

yi = 0
�
� x i ; si ; �̂ 0; f̂

�
: (1.9)

In genetics, practitioners have generally been reluctant to make parametric assumptions

about F . Efron has developed various empirical Bayes methods for estimating false discovery

rates without making any assumptions aboutG and without modeling g directly (see, in

particular, Efron [2010]). More recently, Stephens [2017] has argued that simply requiringG

to be a family of priors that is unimodal at zero can improve FDR control while retaining

the �exibility of nonparametric approaches. Two families that work well in practice are the

family of scale mixtures of normals

Gsmn :=
�

g : g �
Z 1

0
N

�
0; � 2

�
dh

�
� 2

�
for some distribution h

�
(1.10)

and the family of all symmetric distributions g that are unimodal at zero. For analogy with

Gsmn, the latter can be represented as a family of scale mixtures of uniforms:

Gsymm :=
�

g : g �
Z 1

0
Unif [� a; a] dh (a) for some distribution h

�
: (1.11)

These families and others are implemented in Stephens'sR packageashr . To solve the
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EBNM problem for nonparametric prior families, ashr borrows ideas from Koenker and

Gu's R packageREBayes (Koenker and Gu [2017]), which is primarily concerned with the

problem of �nding the Kiefer-Wolfowitz nonparametric maximum likelihood estimate � that

is, the EBNM problem with G the family of all distributions (Kiefer and Wolfowitz [1956]).

All of the prior families de�ned so far are families of shrinkage priors, which guarantee

that posterior means will never be larger than raw observations:

jE
�
� i

�
� x i ; si ; ĝ

�
j � j x i j: (1.12)

To motivate prior families that have a very di�erent �avor, I consider semi-nonnegative

matrix factorization (Ding et al. [2010]) as a third application. Wang and Stephens [2021]

showed that an EB approach to matrix factorization can be reduced to a series of EBNM

problems. As a schematic illustration, consider the rank-one model:

X = ` f 0+ E (1.13)

eij � N
�

0; � 2
�

(1.14)

` i � g̀ 2 G` (1.15)

f j � gf 2 Gf : (1.16)

Here, X is an n � p matrix of observations, ` is an n-vector of loadings,f is a p-vector of

factor scores, andE is an n � p matrix of residual noise. Now, if̀ were �xed, then one could

write

x ij

` i

ind� N

 

f j ;
� 2

`2
i

!

(1.17)

f � gf 2 Gf ; (1.18)
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which is an EBNM problem but with n observations for each �true mean�f j . This suggests

an algorithm for empirical Bayes matrix factorization (EBMF) in which one �xes` and solves

an EBNM problem to estimatef , then �xes f to estimate ` , and iterates until convergence.

For a more rigorous treatment, see Wang and Stephens (the details are somewhat di�erent

from what has been described here).

A particular appeal of the EBMF approach is that di�erent prior families can be speci�ed

for loadings and factor scores, as well as for each of the factors in a rank-K factorization.

Semi-nonnegative matrix factorizations can be obtained by allowing factor scores to take

arbitrary values while constraining loadings to be nonnegative by way of a prior family with

nonnegative support. For example, one can setGf = Gnorm while taking G̀ to be the family

of nonnegative distributions that are unimodal at zero, which, similarly toGsymm, can be

represented as a family of mixtures of uniforms:

Gnn :=
�

g : g �
Z 1

0
Unif [0; a] dh (a) for some distribution h

�
: (1.19)

As I argue in Chapter 2, a semi-nonnegative approach to matrix factorization can o�er

substantial gains in interpretability without the computational di�culties that a fully non-

negative approach entails (see, in particular, Section 2.3.3). In Section 1.5, I will tease this

larger argument by obtaining a semi-nonnegative matrix factorization of the GTEx dataset

discussed by Wang and Stephens.

1.3 Software: Methods and Theory

Several software packages have been developed to solve the EBNM problem for speci�c

choices of prior family. In the previous section, I citedEbayesThresh (point-Laplace and

point-Cauchy prior families), ashr (nonparametric unimodal prior families), andREBayes

(the family of all distributions). Other R packages includehorseshoe, which estimates a
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Function Form of Prior Package Sign Symm.

normal N
�
�; � 2�

ebnm X

point_normal � 0� � + (1 � � 0) N
�
�; � 2�

ebnm X

point_laplace � 0� � + (1 � � 0) Laplace(�; a ) ebnm X

point_exponential � 0� 0 + (1 � � 0) Exp (a) ebnm +

horseshoe Horseshoe(� ) horseshoe X

normal_scale_mixture
R1

0 N
�
0; � 2�

dh
�
� 2�

ebnm X

unimodal_symmetric
R1

0 Unif[� a; a] dh(a) ashr X

unimodal
R1

�1 Unif[0; a] dh(a) ashr

unimodal_nonnegative
R1

0 Unif[0; a] dh(a) ashr +

unimodal_nonpositive
R1

0 Unif[� a;0] dh(a) ashr -

npmle
R1

�1 � x dh(x) ebnm

deconvolver Narasimhan and Efron [2020] deconvolveR

Table 1.1: Prior families implemented inebnm . �Sign� indicates the family's support (non-
negative, nonpositive, or real-valued). �Symm.� indicates whether the family is symmetric
about its mode.

horseshoe prior (Carvalho et al. [2010]), anddeconvolveR , which models a smooth prior

using a natural spline basis (Narasimhan and Efron [2020]).

I designed packageebnm with two intentions. First, I wanted to provide an interface

with common inputs and outputs for previously implemented prior families. Second, imple-

mentations for some simple but useful prior families (in particular, zero-mean normal and

point-normal families) are, to my knowledge, not available via a commonly used repository

such as CRAN or Bioconductor. I implemented such families from scratch. In other cases, I

re-implemented existing families when e�ciency could be improved or when desired outputs

weren't available.

Table 1.1 lists all prior families implemented inebnm . I've divided the table into three

main groups. The �rst group, which is discussed in Section 1.3.1, consists of families de�ned

by a small number of parameters. Some are spike-and-slab families (point-normal, point-

Laplace, point-exponential); others are families of single-component distributions (normal,
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horseshoe). Section 1.3.2 details the approach used byashr (Stephens [2017]) to estimate

g for the second group, which consists of nonparametric families that are unimodal at zero.

The approach is similar to the one used byREBayes (Koenker and Gu [2017]) to �nd the

NPMLE: both discretize the problem by choosing a �grid� of scale or location parameters and

then estimate mixture proportions for each component via maximum likelihood. In Section

1.3.3, I provide new theoretical results that can more rigorously guide the selection of the

grid. Finally, Section 1.3.4 describes the third group, which consists of the NPMLE and the

deconvolveR prior, which are not in general unimodal. Results for NPMLE grid selection

are provided as well.

1.3.1 Parametric Families

While, in general, any method that �peeks� at the data in order to estimateg can be quali�ed

as empirical Bayes, I use maximum likelihood to estimateg 2 G throughout. Thus inference

for the EBNM problem is a two-step procedure in whichg is �rst estimated:

ĝ = argmax
g2G

Y

i

Z
p

�
x i

�
� � i ; si

�
dg(� i ) ; (1.20)

and then quantities of interest are calculated using posterior distributionsp
�
� i

�
� x i ; si ; ĝ

�
.

When all standard errorssi are identical (say,si = s for all i ), then the family of zero-

mean normal distributionsGnorm o�ers a simple closed-form solution to the EBNM problem:

ĝ � N
�

0; max
�

0;
1
n

X
x2

i � s2
��

(1.21)

I note in passing that this solution is di�erent from the one implied by the positive-part

James-Stein estimator, which divides
P

x2
i by n � 2 rather than by n (Efron and Morris

[1973]).

For heteroskedastic observations and for all other parametric families (point-normal,
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point-Laplace, point-exponential, and horseshoe), a closed-form solution is not available.

Since at most three parameters need to be estimated (the mode, the scale of the slab com-

ponent, and the spike/slab mixture proportions), o�-the-shelf optimizers are su�cient. By

default, ebnm usesnlm, a Newton-type method included in packagestats . Other options

include the L-BFGS-B algorithm as implemented bystats function optim and the trust-

region method implemented in packagetrust . In each of my experiments,nlm was either

the fastest method or di�ered from the fastest by less than a factor of two. For details, see

the benchmarking results in Section 1.7.

I implemented likelihood, gradient, and Hessian calculations for all parametric families

except the horseshoe. Functionebnm_horseshoecalls into packagehorseshoe (van der Pas

et al. [2019]).

1.3.2 Nonparametric Unimodal Families

To estimate g 2 G when the prior family G is nonparametric, ebnm uses the strategy

outlined in Stephens [2017] and implemented in packageashr (which in turn borrows ideas

from Koenker and Gu [2017]). Namely, withG represented as a family of in�nite mixtures

of parametric distributions, ashr �rst chooses a suitably dense subfamily of �nite mixtures

~G � G . A careful selection of this (parametric) subfamily~G ensures that the solution~g 2 ~G

will be a good approximation to the exact MLEĝ 2 G.

For example, the family of scale mixtures of normals is de�ned as the family of in�nite

mixtures

Gsmn :=
�

g : g �
Z 1

0
N

�
0; � 2

�
dh

�
� 2

�
for some distribution h

�
: (1.22)

By choosing a su�ciently dense grid of scale parametersf � 2
1; : : : ; � 2

K g, it's possible to obtain
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a solution to the EBNM problem for the subfamily

~G =

8
<

:
g : g � � 1N

�
0; � 2

1

�
+ : : : + � K N

�
0; � 2

K

� �
�
�
� � 1; : : : ; � K � 0;

KX

k=1

� k = 1

9
=

;
(1.23)

that is arbitrarily close to the exact MLE ĝ 2 Gsmn.

Similarly, one can write the family of symmetric distributions that are unimodal at zero

as

Gsymm :=
�

g : g �
Z 1

0
Unif [� a; a] dh(a) for some distribution h

�
: (1.24)

By choosing a dense gridf a1; : : : ; aK g, one can obtain an arbitrarily good approximation to

ĝ 2 Gsymm by optimizing over

~G =

8
<

:
g : g � � 1Unif [� a1; a1] + : : : + � K Unif [� aK ; aK ]

�
�
�
� � 1; : : : ; � K � 0;

KX

k=1

� k = 1

9
=

;
:

(1.25)

For most nonparametric prior families,ebnm calls into ashr , which in turn usesmixsqp

(Kim et al. [2020]) as the default method for estimating the mixture proportions� 1; : : : ; � K .

An algorithm based on sequential quadratic programming that was speci�cally developed

with ashr -like problems in mind, mixsqp tends to be faster than interior-point solvers

such asREBayes when the number of mixture components is not too large. However,

the R implementation of mixsqp , which is slower than theJulia implementation, can be

outpaced byREBayes when there are more than 100 or so mixture components. See the

benchmarking results in Section 1.7.

Becauseashr is intended to be quite general � for example, it can solve empirical Bayes

means problems for likelihoods other than normal � there are some ine�ciencies in the

manner in which it solves the EBNM problem. In particular, I was able to streamline the

algorithm for scale mixtures of normals such thatebnm is roughly twice as fast asashr

when G = Gsmn (again, see Section 1.7).
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1.3.3 Quality of Grid-Based Approximations to Nonparametric Families

Care must be taken in choosing the grid of scale parameters. It should be dense enough to

give a good approximation to the exact solution̂g 2 G but not so dense that computation

crawls to a halt. To provide guidelines for setting the grid, it is useful to bound the distance

from the parametric subfamily ~G to the MLE ĝ 2 G.

For the sake of simplicity, consider the case where all standard errorssi are identical to

s. The quality of the grid-based approximation can be measured as the minimum Kullback-

Leibler divergence, over all~g 2 ~G, from the convolution of~g with the normal error distribution

h � N
�
0; s2�

to the convolution of the exact solutionĝ with the error distribution h:

KL
�

ĝ � h
�
� ~G � h

�
:= min

~g2 ~G

Z
log

(ĝ � h)(x)
(~g � h)(x)

d(ĝ � h)(x); (1.26)

where

(ĝ � h)(x) :=
Z

1
p

2�s 2
exp

�
�

y2

2s2

�
ĝ(x � y) dy (1.27)

and where(~g � h)(x) is similarly de�ned.

This divergence has a very natural interpretation. Recall that the objective function

that is being maximized in order to estimateg 2 G is the marginal log likelihood of the

data,
P

i logp
�
x i

�
� si ; g

�
. The KL divergence de�ned by Equation 1.26 gives the expected

per-observation reduction in log likelihood that one incurs when one moves from the non-

parametric family Gto the parametric subfamily ~G, assuming that the data is truly generated

from the exact solutionĝ 2 G.

For the prior family Gsmn, the following result allows the grid to be described by a single

parameter, the �grid multiplier� m, which maps to a tight bound on the KL divergence from

~G � h to ĝ � h:

Theorem 1.1 (Scale mixtures of normals). Let G = Gsmn and let all standard errorssi be

identical to s. Choosem > 1 and set the grid of scale parameters to bef 0; (m � 1)s2; (m2 �

16



Figure 1.1: Quality of grid-based approximations for scale mixtures of normals as a function
of the grid multiplier m. Plotted is an upper bound on the KL-divergence from the approxi-
mate solution convolved with the error distribution to the exact solution convolved with the
error distribution.

1)s2; : : : ; (mK � 1 � 1)s2g, with K taken to be su�ciently large so thatK � 1 � logm
max i x2

i
s2 .

Then

KL
�

ĝ � h
�
� ~G � h

�
� max

1� � 2� m
min

0� ! � 1
KL

�
N

�
0; � 2

� �
�
�
� ! N (0; 1) + (1 � ! ) N (0; m)

�
:

(1.28)

The quantity on the right-hand side can be evaluated using Monte Carlo sampling and

is plotted over a range ofm in Figure 1.1. The proof of the theorem is deferred until the

end of the section.

For example, the defaultashr grid is f 0; c; mc; m2c; : : : ; mK � 1cg, with c = s2

100 and

m = 2. Sincec � (m � 1)s2 and m � mk+1 � 1
mk � 1

for all k, this grid is �ner than the grid given

by the theorem, with the grids equally dense ask ! 1 . Theorem 1.1 and Figure 1.1 thus

give an upper bound on KL
�

ĝ � h
�
� ~G � h

�
of about 0.002, which implies that the objective

attained by the approximate solution is guaranteed to be within one log likelihood unit of
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the objective attained by the exact solution for up to 500 observations or so (again assuming

that the exact solution matches the true data distribution).

In general, with n observations, I �nd that choosingm such that

KL
�

ĝ � h
�
� ~G � h

�
� 1=n (1.29)

is a good rule of thumb, since1=n is the approximate order of magnitude of the KL-divergence

from ĝ� h to the true prior g convolved with the error distribution h wheng 2 Gsmn. (Indeed,

it would be of doubtful utility to require an approximation ~g � ĝ that is orders of magnitude

more accurate than the estimatêg � g.) While calculating E
�
KL (g � h

�
� ĝ � h)

�
is not

feasible forGsmn, the following result holds for the family of zero-mean normal distributions

Gnorm (a proof is given at the end of the section):

Theorem 1.2. Let x be a vector of homoskedastic observations generated from some true

prior belonging to the family of zero-mean normal distributionsGnorm. Estimate ĝ as

ĝ = argmax
g2Gnorm

Y

i

Z
p

�
x i

�
� � i ; si

�
dg(� i ) : (1.30)

Then

E
�
KL

�
g � h

�
� ĝ � h

��
= O

�
1
n

�
: (1.31)

SinceE
�
KL (g � h

�
� ĝ � h)

�
ought to be at least as small for larger prior families such as

Gsmn, Theorem 1.2 justi�es the rule of thumb given by Equation 1.29.

To test the theory, I simulate, for each ofn 2 f 100; 1000; 10000g, 20 datasets with, in

each case, a di�erent scale mixture of normals as the true data-generating distribution. I use

function ebnm_normal_scale_mixture to solve the EBNM problem, �rst using the default

ebnm grid (which uses Theorem 1.1 with the target KL-divergenceE
�
KL (g � h

�
� ĝ � h)

�

equal to1=n) and then using several �ner grids in order to estimate the approximate optimal
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Figure 1.2: Di�erence in log likelihood between theebnm_normal_scale_mixture solution
obtained using the default grid and using an estimated optimal grid. In each case, the data-
generating distribution consists of one to �ve mixture components, with the scales of the
components sampled from an exponential distribution with rate1=5. N (0; 1) noise is added
to the observations.

log likelihood. The theory asserts that, on average, the log likelihood obtained using the

default grid should be within one log likelihood unit of optimal. Figure 1.2 suggests that

this is indeed the case.

Proofs

Proof of Theorem 1.1. Denote the exact MLEĝ 2 Gsmn as

ĝ � � 1N
�

0; � 2
1

�
+ : : : + � L N

�
0; � 2

L

�
; (1.32)

so that

ĝ � h � � 1N
�

0; � 2
1 + s2

�
+ : : : + � L N

�
0; � 2

L + s2
�

: (1.33)
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Assign the � 2
` s to their respective grid intervals� 2

a(`) � � 2
` < � 2

b(`) (that is, set � 2
a(`) =

max
�

� 2
k : � 2

k � � 2
`

	
and � 2

b(`) = min
�

� 2
k : � 2

k > � 2
`

	
; note, in particular, that b(`) = a(`)+1 ).

Choose0 � ! � 1 and consider

~g! � � 1

�
! N

�
0; � 2

a(1)

�
+ (1 � ! )N

�
0; � 2

b(1)

��
+ : : : +

� L

�
! N

�
0; � 2

a(L)

�
+ (1 � ! )N

�
0; � 2

b(L)

��
: (1.34)

Now, by the chain rule for relative entropy (see, for example, Hershey and Olsen [2007]):

KL
�
ĝ � h

�
� ~g! � h

�
(1.35)

�
X

`

� `KL
�

N
�

0; � 2
` + s2

� �
� ! N

�
0; � 2

a(`) + s2
�

+ (1 � ! )N
�

0; � 2
b(`) + s2

��
(1.36)

=
X

`

� `KL

0

@N

0

@0;
� 2
` + s2

� 2
a(`) + s2

1

A
�
�
�
� ! N (0; 1) + (1 � ! )N (0; m)

1

A (1.37)

� max
1� a� m

KL
�
N (0; a)

�
� ! N (0; 1) + (1 � ! )N (0; m)

�
: (1.38)

Thus, since~g! 2 ~G and ! was chosen arbitrarily,

KL
�

ĝ � h
�
� ~G � h

�
� min

0� ! � 1
KL

�
ĝ � h

�
� ~g! � h

�
(1.39)

� max
1� a� m

min
0� ! � 1

KL
�
N (0; a)

�
� ! N (0; 1) + (1 � ! )N (0; m)

�
: (1.40)

Proof of Theorem 1.2. Let g � h � N (0; � 2). Then

ĝ � h � N (0; � 2); (1.41)
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where

� 2 =
1
n

X

i

x2
i �

� 2

n
� 2

n: (1.42)

(I assume that � 2 is large enough so thatP(� 2 > 1) � 1). Also,

KL
�
g � h

�
� ĝ � h

�
= KL

�
N

�
0; � 2

� �
� N

�
0; � 2

��
(1.43)

=
1
2

�
� 2

� 2 � 1 + log
�

� 2

� 2

��
: (1.44)

Now,
� 2

� 2 � n� � 1
�

n
2

;
1
2

�
; (1.45)

so

E
� 2

� 2 =
n

n � 2
; (1.46)

and

log
�

� 2

� 2

�
� � logn + log �

� n
2

; 2
�

; (1.47)

so

E log
�

� 2

� 2

�
= � logn + log 2 +  

� n
2

�
; (1.48)

where is the digamma function. Thus

E
�
KL (g � h

�
� ĝ � h)

�
=

2
n � 2

� log
� n

2

�
+  

� n
2

�
(1.49)

=
2

n � 2
�

1
n

+ O(n� 2) (1.50)

=
1

n � 2
+ O(n� 2) (1.51)
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1.3.4 Nonparametric Non-Unimodal Families

In the literature, the term �nonparametric maximum likelihood estimator,� or NPMLE,

denotes the priorĝ that is estimated from among the family of all distributionsGnp. Although

it has found somewhat limited use in applications, it has received considerable theoretical

attention: see, for example, Dicker and Zhao [2016] and Koenker and Gu [2017].

To approximate the NPMLE (which is known to be a �nite mixture of point masses),

one can choose grids of location parametersf � 1; : : : ; � K g and scale parametersf � 2
1; : : : ; � 2

K g

and then optimize over the family of Gaussian mixtures

~G =

8
<

:
g : g � � 1N

�
� 1; � 2

1

�
+ : : : + � K N

�
� K ; � 2

K

� �
� � 1; : : : ; � K � 0;

KX

k=1

� k = 1

9
=

;
:

(1.52)

As above, an analysis of the KL divergence from the grid-based approximation to the exact

MLE can guide grid selection.

Theorem 1.3 (NPMLE, Gaussian mixture approximation). Let G = Gnp and let all standard

errors si be identical tos. Set the grid of location parameters to be equally spaced over the

range of the observationsx i : f m; m + d; : : : ; M = m + ( K � 1)dg, where m = min i x i ,

M = max i x i , and d = M � m
K � 1 . Fix the scale parameters� 2

k at d2=4 for all k. Then

KL (ĝ � h
�
� ~G � h) �

1
2

log
�

1 +
d2

4s2

�
(1.53)

More simply, taking � k ! 0 for all k, one can optimize over mixtures of point masses

~G =

8
<

:
g : g � � 1� � 1 + : : : + � K � � K

�
� � 1; : : : ; � K � 0;

KX

k=1

� k = 1

9
=

;
(1.54)

Theorem 1.4 (NPMLE, Point mass mixture approximation). Again set G = Gnp, let all

standard errors si be identical to s, and set the grid of location parameters to be equally
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Figure 1.3: Di�erence in log likelihood between theebnm_npmlesolution obtained using the
default grid (which uses Theorem 1.4 with the target KL-divergence equal to1=n) and using
an estimated optimal grid. Each data-generating distribution consists of one to �ve point
masses sampled from an exponential distribution with rate1=5.

spaced over the range of the observations. Using a family of mixtures of point masses to

approximateGnp,

KL (ĝ � h
�
� ~G � h) �

d4

64s4 (1.55)

Proofs are included at the end of the section. Whend is small relative to s (roughly,

when d < 2:3s), then the latter bound is better. For most problems, packagemixsqp can

comfortably handle hundreds of mixture components, so a mixture of point masses should

be preferred unless the range of the observations is unusually large relative tos.

As in Section 1.3.3, I con�rm the theory via simulation. Results are shown in Figure 1.3.

In addition to ebnm_npmle, I've included a function that interfaces with Narasimhan and

Efron's R packagedeconvolveR (Narasimhan and Efron [2020]), which estimatesg using

a natural spline basis. Like the NPMLE, thedeconvolveR prior is nonparametric and not

necessarily unimodal. In contrast to the �spikiness� of the NPMLE, however,deconvolveR

yields a smoothĝ. Depending on the application, one might be preferred to the other.
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Indeed, Koenker [2017] has shown thatdeconvolveR can outperform REBayes in terms

of the Wasserstein distance between the true and estimated priors when the true prior is in

fact smooth.

Proofs

Proof of Theorem 1.3. Note that the exact NPMLE is always a �nite mixture of point masses

(see, for example, Dicker and Zhao [2016]). Using the chain rule for relative entropy as in

the proof of Theorem 1.1 gives

KL (ĝ � h
�
� ~G � h)

� max
0� � � d

min
0� ! � 1

KL
�

N (�; s 2)
�
� ! N

�
0;

d2

4
+ s2

�
+ (1 � ! )N

�
d;

d2

4
+ s2

��
: (1.56)

Choosing! = 0 whenever0 � � � d=2 and ! = 1 wheneverd=2 < � � d yields

KL (ĝ � h
�
� ~G � h) � max

0� � � d=2
KL

�
N (�; s 2)

�
� N

�
0;

d2

4
+ s2

��
(1.57)

= max
0� � � d=2

1
2

 
� 2 + s2

d2

4 + s2
� 1 + log

 
d2

4 + s2

s2

!!

(1.58)

=
1
2

log
�

1 +
d2

4s2

�
: (1.59)
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Proof of Theorem 1.4. Again use the chain rule for relative entropy:

KL (ĝ � h
�
� ~G � h) (1.60)

� max
� d=2� � � d=2

min
0� ! � 1

KL
�

N (�; s 2)
�
� ! N

�
�

d
2

; s2
�

+ (1 � ! )N
�

d
2

; s2
��

(1.61)

= max
� d=2� � � d=2

min
0� ! � 1

Ez�N (�;s 2) log

0

@
exp(� (z� � )2

2s2 )

! exp(� (z+ d=2)2

2s2 ) + (1 � ! ) exp(� (z� d=2)2

2s2 )

1

A

(1.62)

The RHS is maximized by setting� = 0 and then minimized by setting! = 1=2. Simplifying

and then using a Taylor expansion gives:

KL (ĝ � h
�
� ~G � h) �

d2

8s2 � Ez�N (0;s2) log
�

cosh
�

dz
2s2

��
(1.63)

�
d2

8s2 �
d2

8s4Ez2 +
d4

192s8Ez4 (1.64)

=
d4

64s4 (1.65)

1.4 Prior Families Comparisons

It's clear that certain prior families o�er more �exibility than others. A direct comparison

is possible in the case where families are nested. For example,

Gnorm � G pn � G smn � G symm � G np; (1.66)

where the prior familiesG are, respectively, the family of zero-mean normals (Equation 1.3),

point-normal priors (Equation 2.5), scale mixtures of normals (Equation 1.10), symmetric

unimodal priors (Equation 1.11), and the nonparametric family of all distributions. At
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one extreme,Gnorm has good shrinkage properties and allows the EBNM problem to be

easily solved by optimizing over a single variable. However, the inability to model exact

sparsity or heavy tails proves too in�exible for many applications. At the other extreme,

the nonparametric family of all distributions is, by de�nition, more �exible than any other

family, but its implementation requires more ingenuity. Further, estimateŝg 2 Gnp tend to

be �spiky� distributions that often perform well in terms of, say, mean squared error, but

sometimes feel unnatural from the point of view of the application.

As I will show in Section 1.4.1, �exibility typically comes at the cost of runtime. When

the EBNM problem only needs to be solved once, runtime is not usually a concern, but in

applications such as EBMF that must iteratively solve a large number of EBNM problems,

speed can be critical. On the other hand, one of the advantages of �exibility is that, as I

illustrate in Section 1.4.2, it can improve predictive performance. There are limits, however:

in particular, since Gnp does not encode any assumptions about sparsity, the NPMLE does

worse than unimodal prior families when the data-generating distribution is sparse.

Throughout, I use three data-generating distributions:

ˆ Point-normal . A point-normal prior with 90% sparsity:

0:9� 0 + 0:1N
�

0; 22
�

: (1.67)

ˆ Point-t . A 80-20 mixture of a point mass at zero and a scaledt5 distribution:

0:8� 0 + 0:2 � 1:5t5: (1.68)

ˆ Asymmetric tophat distribution . A 50-50 mixture of a point mass at zero and a

uniform distribution on [� 5; 10]

0:5� 0 + 0:5Unif[� 5; 10]: (1.69)
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Figure 1.4: Runtime for variously sized datasets and for di�erent choices of prior family.

1.4.1 Timing Comparisons

To provide an overview of how the choice of prior family a�ects runtime, I �t ebnm to

datasets simulated from a point-t prior (Equation 1.68) with the number of observations

ranging from 103 to 106 (I experimented with di�erent data-generating distributions, but

results did not substantially change). All trials were performed on a 2018 MacBook Pro with

a 2.6 GHz Intel Core i7 processor and 16 GB of DDR4-2400 RAM.

Results are displayed in Figure 1.4. In general, there is a clear correlation between runtime

and the size of the prior family. Note that this is not an obvious result, since the EBNM

problem is convex for the (discretized) nonparametric prior families discussed in Sections

1.3.2 and 1.3.4 but not in general convex for the parametric point-normal and point-Laplace

families (see Section 1.3.1). The family of horseshoe distributions is an exception: although

it is parametrized by a single parameter, it is slower than nearly every other family by an

order of magnitude or more.

27



Figure 1.5: Simulation results for the point-normal data-generating prior. See text for details.

1.4.2 Predictive Performance Comparisons

For each of the data-generating distributions listed above, I run ten simulations in which I

simulate n = 1000 �true means� � , add N (0; 1) noise, and then estimate� using various

prior families. In Figures 1.5-1.7, I show the mean log likelihood attained by each prior

family relative to the ebnm_npmlelog likelihood; the root mean-squared error

vu
u
t

nX

i =1

�
�̂ i � � i

� 2
; (1.70)

where �̂ i is the posterior meanE
�
� i

�
� x i ; si ; ĝ

�
; and the proportion of true means that are

covered by 90% credible intervals (which were obtained via the posterior samplers returned

by ebnm ).

In every case,ebnm_npmleattains the maximum log likelihood, which is expected since

Gnp includes every other prior family as a subfamily. However, it does slightly worse in

terms of RMSE than prior families that encode assumptions about sparsity, provided that

these families are �exible enough to model the data-generating distribution (for example,

only the family of unimodal priors is �exible enough to model the asymmetric tophat).
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Figure 1.6: Simulation results for the point-t data-generating prior.

Figure 1.7: Simulation results for the asymmetric tophat data-generating prior.
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Further, the NPMLE does very poorly in terms of credible interval coverage, which suggests

that it's much more useful for point estimates than for uncertainty estimates. Results for

ebnm_deconvolverare also poor, but recall thatdeconvolveR estimates smooth but non-

sparse priors, so it's hardly surprising that it's bested by prior families that are able to model

sparsity directly.

1.5 Real-Data Examples

1.5.1 Eight Schools

As a �rst example of howebnm can yield insights into real data � and how, vice versa, real

data can yield insights into the EBNM problem � I consider the well-known �eight schools�

dataset originally published by Rubin [1981] and subsequently discussed by Gelman et al.

[2014]. In each of eight US high schools, randomized experiments were conducted in order

to estimate the e�ect of coaching programs on SAT scores. The data includes estimates of

treatment e�ects and standard errors.

I used a point-normal prior family to �t the data with, �rst, the mode �xed at zero

(Figure 1.8) and, second, the mode to be estimated (Figure 1.9). Since the �rst prior family

models sparsity, it's more useful for testing whether treatment e�ects are non-null, while the

second prior family is potentially more useful for modelling variation across schools.

In both cases, the priorg is estimated to be a point mass (either� 0 or � � with � � 7:7),

which is consistent with a lack of variation across schools. (The di�erence in log likelihoods

is about 1.8, so that the prior � � is exp(1:8) � 6 times more likely than the prior � 0.)

A possibly unintended consequence is that credible intervals have width zero. Indeed, a

known limitation of empirical Bayes methods is that they don't account for uncertainty in

the estimate ofg. In the eight schools example, the e�ect is especially exaggerated, since EB

estimates yield credible intervals that are useless for all practical purposes. A fully Bayesian
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Figure 1.8: Results for the eight schools example (Rubin [1981]) withmode = 0. The data
is in black, where the points are the treatment e�ect estimates and the error bars are� 2
standard errors; theebnm estimates of the �true� means and 95% credible intervals are in
red. Sinceebnm_point_normal estimates the priorg to be essentially a point mass� 0, the
credible intervals are very narrow.

Figure 1.9: Results for the eight schools example withmode = "estimate" . The prior is
estimated to be a point mass at� � , where� � 7:7.
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method would be more appropriate for interval estimation.

1.5.2 GTEx

Next I consider the GTEx dataset used in Wang and Stephens [2021] (see the introduction to

this chapter for a brief overview of EBMF). The dataset is derived from data made available

by the Genotype Tissue Expression (GTEx) project (Lonsdale et al. [2013]), which provides

z-scores for the e�ects of SNPs on gene expression across 44 human tissues. To reduce

the data to a more manageable size, Urbut et al. [2019] choose the �top� eQTL for each

gene � that is, the SNP associated with the largest (absolute)z-score over all 44 tissues.

This selection process yields a16; 069� 44 matrix of z-scores, with rows corresponding to

SNP-gene pairs and columns corresponding to tissues.

First, I ran EBMF using point-normal priors (while Wang and Stephens use scale mix-

tures of normals, I �nd that results are very similar, at least to the eye, for the point-normal

and scale-mixture-of-normal prior families). Next, I obtained a semi-nonnegative matrix fac-

torization (SNMF) by using a nonnegative prior family (Equation 1.19) for loadings (tissues)

and point-normal priors for factors (eQTLs).

Results are shown in Figures 1.10-1.12. I sorted point-normal results by descending pro-

portion of variance explained and then �matched� point-normal factors with semi-nonnegative

factors for ease of comparison. While results are similar, many of the semi-nonnegative fac-

tors are noticeably cleaner (2, 4, 6, 7, 10, 12, 15, and especially 8), while only one factor (16)

gets somewhat busier. (I note, however, that it's possible that this �busyness� is biologically

relevant.) The greatest advantage to SNMF, I would argue, is the lack of anti-correlations,

which are somewhat di�cult to motivate biologically in this particular setting. Consider Fac-

tor 10, for example: the semi-nonnegative factorization suggests only that there is correlation

of eQTL e�ect sizes in cerebellar hemisphere and cerebellum tissues, while the point-normal

factorization suggests that eQTLs that increase gene activity in cerebellar tissues alsode-
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