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Mass spectrometry provides a high-throughput way to identify
proteins in biological samples. In a typical experiment, proteins in a
sample are first broken into their constituent peptides. The resulting
mixture of peptides is then subjected to mass spectrometry, which
generates thousands of spectra, each characteristic of its generat-
ing peptide. Here we consider the problem of inferring, from these
spectra, which proteins and peptides are present in the sample. We
develop a statistical approach to the problem, based on a nested
mixture model. In contrast to commonly-used two-stage approaches,
this model provides a one-stage solution that simultaneously identifies
which proteins are present, and which peptides are correctly identi-
fied. In this way our model incorporates the evidence feedback be-
tween proteins and their constituent peptides. Using simulated data
and a yeast dataset, we compare and contrast our method with ex-
isting widely-used approaches (PeptideProphet/ProteinProphet) and
with a recently-published new approach, HSM. For peptide identifi-
cation, our single-stage approach yields consistently more accurate
results. For protein identification the methods have similar accuracy
in most settings, although we exhibit some scenarios in which the

existing methods perform poorly.
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1. Introduction. Protein identification using tandem mass spectrome-
try (MS/MS) is the most widely used tool for identifying proteins in complex
biological samples (Steen and Mann, 2004). In a typical MS/MS experiment
(Figure la), proteins in a sample are first broken into short sequences, called
peptides, and the resulting mixture of peptides is subjected to mass spec-
trometry to generate tandem mass spectra, which contains sequence infor-
mation that is characteristic of its generating peptide (Coon et al.; 2005;
Kinter and Sherman, 2003). The peptide that is most likely to generate
each spectrum then is identified using some computational methods, e.g. by
matching to a list of theoretical spectra of peptide candidates. From these
putative peptide identifications, the proteins that are present in the mix-
ture are then identified. The protein identification problem is challenging,
primarily because the matching of spectra to peptides is highly error-prone:
80-90% of identified peptides may be incorrect identifications if no filtering
is applied (Keller, 2002; Nesvizhskii and Aebersold, 2004). In particular,
to minimize errors in protein identifications it is critical to assess, and take
proper account of, the strength of the evidence for each putative peptide
identification.

Here we develop a statistical approach to this problem, based on a nested
mixture model. Our method differs from most previous approaches to the
problem in that it is based on a single statistical model that incorporates
latent variables indicating which proteins are present, and which peptides
are correctly identified. Thus, instead of taking the more common sequen-
tial approach to the problem (spectra — peptides — proteins), our model

simultaneously estimates which proteins are present, and which peptides are
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correctly identified, allowing for appropriate evidence feedback between pro-
teins and their constituent peptides. This not only provides the potential for
more accurate identifications (particularly at the peptide level), but, as we
illustrate here, it also allows for better calibrated estimates of uncertainty
in which identifications are correct. As far as we are aware, the only other
published method that takes a single-stage approach to the problem is that
of Shen et al (Shen et al., 2008). Although Shen et al’s model shares the goal
of our approach of allowing evidence feedback from proteins to peptides, the
structure of their model is quite different from ours (see Discussion for more
details), and, as we see in our comparisons, the empirical performance of the
methods can also differ substantially.

In general statistical terms this problem involves a nested structure of a
form that is encountered in other statistical inference problems (e.g. multi-
level latent class models (Vermunt, 2003), hierarchical topic models (Blei, Gri, Jordan, and Tenenbaumn
2004)). These problems usually share two common features: (1) there exists
a physical or latent hierarchical relationship between lower-level and upper-
level elements; and (2) only the lowest-level elements in the hierarchy are
typically observed. Here the nested structure is due to the subsequence re-
lationship between lower-level elements (peptides) and upper-level elements
(proteins) (Figure 1b). The goals of inference will, of course, vary depending
on the application. In this case the primary goal is to infer the states (i.e.
presence or absence in the mixture) of the upper-level elements, though the
states of the lower-level elements is also of interest.

The structure of the paper is as follows. Section 2 describes the problem

in more detail, reviews existing approaches, and describes our modeling ap-
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proach. Section 3 shows empirical comparisons of our method with different
approaches on both real and simulated data. In section 5 we conclude and

discuss potential future enhancements.

2. Methods and Models. The first step in analysis of MS/MS data
is typically to identify, for each spectrum produced, the peptide that is
most likely to have generated the observed spectrum, and to assign each
such identification a score that reflects the strength of the evidence for the
identification being correct. Often this process is performed by searching a
database of potential peptides, and computing some measure of the similar-
ity between the observed spectrum and a theoretical “expected” spectrum
for each peptide in the database (e.g. (Sadygov, Liu, and Yates, 2004)). For
each spectrum the highest-scoring peptide is then reported, together with
its score. Here we assume that this process has already been performed, and
tackle the protein identification problem: using the list of putative peptides,
and scores, to infer a list of proteins that are likely to be present in the
mixture. Other important goals include accurately assessing confidence for
each protein identification, and inferring which of the initial putative peptide

identifications are actually correct.

2.1. Euxisting approaches. Almost all current approaches to protein iden-

tification follow a two-stage strategy:

1. The peptide identification scores are processed, together with other
relevant information (e.g. sequence characteristics) on the identified
peptide, to compute a statistical measure of the strength of evidence

for each peptide identification. Although several methods exist (e.g.
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(Sadygov and Yates, 2003; Kall, Canterbury, Weston, and Noble, 2007)),
by far the most widely used approach appears to be PeptideProphet
(Keller, Nesvizhskii, Kolker, and Aebersold, 2002), which uses a mix-
ture model to cluster the identified peptides into correct and incorrect
identifications, and to assign a probability to each peptide identifica-
tion being correct.

2. The statistical measures of support for each peptide identification are
taken as input to a protein inference procedure. These procedures infer
the presence or absence of each protein, either by simple ad hoc thresh-
olding rules, e.g. identifying proteins as present if they contain two or
more peptides with strong support, or by more sophisticated means
(ProteinProphet (Nesvizhskii, Keller, Kolker, and Aebersold, 2003), Prot_Probe
(Sadygov, Liu, and Yates, 2004) and EBP (Price, 2007)). The basic
idea of ProteinProphet (Nesvizhskii et al.; 2003), which is the most

widely used of these methods, will be described below.

This two-stage approach, although widely used, is sub-optimal. In partic-
ular, it does not allow for evidence to feed back, from the presence/absence
status of a protein to the status of its constituent peptides, as it should
due to the nested relationship between a protein and its peptides. Shen et
al (Shen, Wang, Shankar, Zhang, and Li, 2008) also note this problem with
the two-stage approach, and propose an alternative one-stage approach us-
ing a latent-variable-based model. Their model differs from ours in several
aspects (see discussion), and performs less well than our approach in the

limited empirical comparisons we consider here (see results).



6 LI, MACCOSS AND STEPHENS

Protein Peptide Spectrum ——— .
Experimental process
I — : T % O Proten e Proteins
.
—— i, P :
H ML Prae_nt
Protein identification Peptide identification OO O OO O O Spectrum B Proteins
a c

F1G 1. (a) Protein identification using mass spectrometry. Proteins (left) are broken into
constituent peptides (center), which are then subjected to mass spectrometry to produce
spectra (right). The inference problem considered here is to infer which peptides, belong-
ing to which proteins, generated the observed spectra. (b) Graphical representation of the
nested relationship between spectra, peptides and proteins. (c¢) Examples of putative protein
identifications reconstructed from putative peptide identifications. Proteins that are truly
absent from the sample will contain all incorrectly identified peptides (black). Proteins that
are present in the sample will typically contain a mizture of correctly (red) and incorrectly
(black) identified peptides.

2.2. A nested mixture model. The data consist of a large number of pu-
tative peptide identifications, each corresponding to a single MS/MS spec-
trum, and each having a score that relates to the strength of the evidence
for the identification being correct (higher scores corresponding to stronger
evidence). From this list of putative peptides, it is straightforward to (deter-
ministically) create a list of putative protein identifications. Specifically, for
each putative peptide identification it is straightforward to determine, from
a protein database, which proteins contain that peptide. The information
available can thus be arranged in a hierarchical structure: a list of N puta-
tive protein identifications, with the information on protein k being a list
of nj, putative peptide identifications, with a corresponding vector of scores
Xk = (Th,1,- .., Tkn,). Here z; is a scalar score that reflects how well the
spectrum associated with peptide j in protein £ matches a theoretical expec-
tation under the assumption that it was indeed generated by that peptide.

(Typically there are also other pieces of information that are relevant in
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assessing the evidence for peptide j having generated the spectrum, but we
defer consideration of these to Section 2.5 below.) In general, correct pep-
tide identifications have higher scores than incorrect ones, and proteins that
are present tend to have more high-scoring peptide identifications than the
ones that are not present. Our goal is to use this information to determine
which assembled proteins are present in the sample and which peptides are
correctly identified.

Note that, in the above formulation, if a peptide is contained in multiple
proteins then the data for that peptide is included multiple times. This
is clearly sub-optimal, particularly as we will treat the data on different
proteins as independent. The practical effect is that if one peptide has a
very high score, and belongs to multiple proteins, then all these proteins
will likely be identified as being present, even though only one of them may
actually be present. This complication, where one peptide maps to multiple
proteins, is referred to as “degeneracy” (Keller et al., 2002). We refer to our
current treatment of degeneracy as the “nondegeneracy assumption” for the
rest of the text. We view extension of our method to deal more thoroughly
with degeneracy as an important area for future work.

We use indicators T}, to represent whether a protein k is present (T}, = 1)
or absent (7}, = 0) in the sample, and indicators P} ; to represent whether
a peptide i on the protein k is correctly identified (P ; = 1) or incorrectly
identified (Py,; = 0). We let 75 and 77 = 1 — 7§ denote the proportions of

absent and present proteins respectively:

(2.1) Pr(Ty =j)=n (k=1,...,N;j=0,1).

If a protein is absent, we assume that all its constituent peptides must be
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incorrectly identified; in contrast, if a protein is present then we allow that
some of its constituent peptides may be correctly identified, and others in-
correct (Figure 1c). Specifically we assume that given the protein indicators

the peptide indicators are independent and identically distributed, with

(2.2) Pr(P;=0|Tp =0) =1,

(23) PF(P]CJ' =0 | Tk = 1) =171,

where 7 denotes the proportion of incorrect peptides on proteins that are
present.

Given the peptide and protein indicators, we assume that the number
of peptides mapping to an present (respectively, absent) protein has distri-
bution h; (respectively, hg), and that the scores for correctly (respectively,
incorrectly) identified peptides are independent draws from a distribution f;
(respectively, fo). Since present proteins will typically have more peptides
mapping to them, h; should be stochastically larger than hg. Similarly, since
correctly-identified peptides will typically have higher scores, fi should be
stochastically larger than fo. The details on the choice of functional form
for these distributions are discussed in Section 2.3 for f; and in Section 2.4
for h;.

Let ¥ denote all the parameters in the above model, which include (7§, 77, 1)

as well as any parameters in the distributions hg, k1, fo and f;. We will

use X,n to denote the observed data, where X = (x1,...,xN), and n =
(n1,...,ny). The above assumptions lead to the following nested mixture
model:

N

(2.4) L(W) = p(X,n; V) = [] 7590 (xk)ho(nk) + 5 g1 (xx)ha(ny)]
k1
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where

(25)  go(xk) = p(xk | ng, T, = 0) = ﬁ Jo(zks)
=1

Nk

(2.6)  gi(xk) =pxk |, T =1) = H[ﬁfo(iﬂk,i) + (1 —m1) fr(2r,)]

i=1
Given the parameters W, the probability that peptide k is present in the

sample can be computed as

75 95 (i) hj (ng)

(2.7) Pr(T, =j | X,n;¥) = - .
> j—0,1 7595 (%K) P (n)

Similarly the classification probabilities for peptides on the proteins that

are present are

1 f1(Tk,i)
w1 fo(zr,i) + (1 — m1) fi(ze)

As an absent protein only contains incorrect peptide identifications, i.e.

(2.8) Pr(Pp; =1|ap;, T, =1,¥) =

Pr(Py; = 1| xk, T} = 0) = 0, the marginal peptide probability is
(2.9) PI‘(P]C’Z' =1 ’ Xk) = PI‘(PkJ' =1 ‘ Xk,Tk = 1) PI‘(Tk =1 ‘ Xk).

This expression emphasizes how each peptide’s classification probability is
affected by the classification probability of its parent protein. We estimate
values for these classification probabilities by estimating the parameters W
by maximising the likelihood, (2.4), and substituting these estimates into
the above formulae.

The idea of modeling the scores of putative peptide identifications using
a mixture model is also the basis of PeptideProphet (I<eller et al., 2002).
Our approach here extends this to a nested mixture model, modeling the
overall sample as a mixture of present and absent proteins. By simultane-

ously modelling the peptide and protein classifications we obtain natural
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formulae, (2.7) and (2.9), for the probability that each protein is present,
and each peptide correctly identified.

It is helpful to contrast this approach with the PeptideProphet/ProteinProphet
two-stage strategy, which we now describe in more detail. First Peptide-
Prophet models the overall sample as a mixture of present and absent pep-
tides, ignoring the information on which peptides map to which proteins.
This leads naturally to a formula for the probability for each peptide be-
ing correctly identified, Pr(Pj; = 1|X), and these probabilities are output
by PeptideProphet. To translate these probabilities into a measure of the
strength of evidence that each protein is present, ProteinProphet essentially

uses the formula

(2.10) p];’ord(Tk =1]X)=1- H Pr(Py; = 0|X),
which we refer to as the “product rule” in the remainder of this text. This
formula is motivated by the idea that a protein should be called as present
only if not all peptides mapping to it are incorrectly identified, and by
treating the incorrect identification of each peptide as independent (leading
to the product).

There are two problems with this approach. The first is that the proba-
bilities output by PeptideProphet ignore relevant information on the nested
structure relating peptides and proteins. Indeed, Nesvizhskii et al. (2003)
recognizes this problem, and ProteinProphet actually makes an ad hoc ad-
justment to the probabilities output by PeptideProphet, using the expected
number of other correctly-identified peptides on the same protein, before
applying the product rule. We will refer to this procedure as the “adjusted

product rule”. The second, more fundamental, problem is that the indepen-
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dence assumption underlying the product rule does not hold in practice.
Indeed there is a strong correlation among the correct/incorrect statuses of
peptides on the same protein. For example, if a protein is absent, then (ig-
noring degeneracy) all its constituent peptides must be incorrectly identified.
In contrast, our approach makes a very different independence assumption,
which we view as more reasonable. Specifically it assumes that, conditional
on the correct/incorrect status of different peptides, the scores for different
peptides are independent.

Empirically, it seems that, despite these issues, ProteinProphet is typically
quite effective at identifying which proteins are most likely to be present.
However, as we show later, probabilities output by the product rule are not

well calibrated, and there are settings in which it can perform poorly.

2.3. Choice of scores and distributions fo, fi. Recall that fy and f; de-
note the distribution of scores for peptides that are incorrectly and cor-
rectly identified. Appropriate choice of these distributions may depend on
the method used to compute scores (Choi and Nesvizhskii, 2008a,b). To fa-
cilitate comparisons with PeptideProphet we used the discriminant summary
used by PeptideProphet, fval, as our score. Of course, it is possible that other
choices may give better performance.

Similar to ProteinProphet, when a single peptide is matched to multi-
ple spectra, each match producing a different score, we summarized these
data used the highest score. (ProteinProphet keeps the one with the highest
PeptideProphet probability, which is usually, but not always, the one with
the highest score.) An alternative would be to model all scores, and treat

them as independent, as in (Shen et al., 2008). However, in preliminary em-
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pirical assessments we found using the maximum to produce better results,
presumably because the independence assumption is poor (scores of spectra
matching to the same peptide are usually highly correlated (I<eller et al.,
2002)).

We chose to use a normal distribution, and shifted gamma distribution,

for fo and f:

folx) = N(a:;u,az)
fi(x) = Gamma(z; a, 8,7),

where ;1 and o2 are the mean and variance of the normal distribution, and
«, 0 and v are the shape parameter, the scale parameter and the shift of
the Gamma distribution. These choices were made based on the shapes of
the empirical observations (Figure 3a), the density ratio at the tails of the
distributions, and the goodness-of-fit between the distributions and the data,
e.g. BIC(Schwarz, 1978). See (Li, 2008) for further details. In particular, to
assign peptide labels properly in the mixture model, we require fy/f1 > 1
for the left tail of fy, and f1/fo > 1 for the right tail of f.

Note that these distribution choices differ from PeptideProphet, which
models fy as shifted Gamma and f; as Normal. The distributions chosen
by PeptideProphet do not satisfy the requirement of fy/f1 above and can
pathologically assign observations with low scores into the component with
higher mean. The selected distributions fit our data well and also the data
in Shen et al, who chose the same distributions as ours after fitting a two-
component mixture model to the PeptideProphet discriminant summary of
their data. However, alternative distributions may be needed based on the

empirical data, which may depend on choice of method for assigning scores.
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In this setting it is common to allow ions with different charge states
to have different distributions of scores. This would be straightforward, for
example by estimating the parameters of fy and f; separately for different
charge states. However, in all the results reported here we do not distinguish
charge states, because in empirical comparisons we found that, once the an-
cillary information in Section 2.5 were included, distinguishing charge states
made little difference to either the discriminating power or the probability

calibration. A similar result is reported in Kall et al. (2007).

2.4. Choice of h: incorporating protein length. Recall that hg and hy
denote the distributions for ny, the number of putative identified peptides
on protein k, according to whether protein k is absent or present. It is
known that long proteins tend to have more identified peptides than short
proteins (Figure 2), because of their potential to generate more peptides in
the experimental procedure, and higher chance to be randomly matched by
incorrect peptide identifications. We therefore allow the distribution of ny
to depend on the protein length [;. Length correction, though of a different
sort, has been reported useful for reducing false identifications of long absent
proteins that are mapped by many incorrect identifications (Price, 2007).

It might be expected that the rate of incorrect peptide identification
in a fixed protein length is roughly uniform across all the proteins in the
database. Thus, we choose hy to be Poisson with mean cyl;, where ¢y repre-
sents the average number of incorrect peptide identifications in a unit protein
length and is constant for all the absent proteins. The mean-variance rela-
tionship of ny, for absent proteins in a real dataset (Figure 2b) confirms that

the Poisson model is a reasonable fit.
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Fic 2. Number of unique peptide hits and protein length in a yeast data. a. The relation-
ship between number of peptide hits (Y-axis) and protein length (X-axis). Red dots are
decoy proteins, which approxrimate absent proteins; black dots are target proteins, which
contains both present proteins and absent proteins. b. Verification of the Poisson model
for absent proteins, approximated by decoy proteins, by mean-variance relationship. Pro-
teins are binned by length with each bin containing 1% of data. Mean and variance of the
number of sequences are calculated for the observations in each bin.

For present proteins, we choose hy to be Poisson with mean c1l;, where
c1 is a constant that is bigger than ¢g to take account of the correct peptide
identifications additional to the incorrect ones. Similar Poisson assumptions,
though with different parameterization, were also made elsewhere (Price,
2007).

Because constructed proteins are assembled from one or more identified
peptides (i.e. ng > 0), we truncate both Poisson distributions at 0, i.e.

exp(—c¢;lg)(cly)™*
ni!(1 — exp(—c;li))

(2.11)  hj(ng | ) = (n,=1,2,...; j=0,1).

2.5. Incorporating ancillary information. In addition to the scores on
each peptide identification based on the spectra, other aspects of identi-
fied peptide sequences, such as the number of tryptic termini (NTT) and
the number of missing cleavage (NMC), are informative for the correctness of

peptide identifications (Kall et al., 2007; Keller et al., 2002; Choi and Nesvizhskii,
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Fic 3. The empirical distribution of features from peptide identification in a yeast data.
Border histogram: real peptides, which are a mizture of correct and incorrect identifications.
Solid histogram: decoy peptides, whose distribution approrimates the distribution of the
incorrect identifications.

2008a). Because NTT € {0, 1,2} (Figure 3b), we model it using a multino-
mial distribution. We discretise NMC, which usually ranges from 0 to 10,
into states (0, 1 and 24) (Figure 3c), and also model it as a multinomial
distribution. These treatments are similar to PeptideProphet.

Peptide identification scores and features on peptide sequences have been
shown to be conditionally independent given the status of peptide identifica-
tion (Keller et al., 2002; Choi and Nesvizhskii, 2008a). Thus we may incor-
porate the ancillary information by replacing f;(X} ;) in (2.5) and (2.6) with
fj(X;m)f]NTT(NTTk,Z-)fJNMC(NMC’IW-) (j = 0,1). Further pieces of relevant

information could be incorporated in a similar way.

2.6. Parameter estimation and initialization. We use an expectation-
maximization (EM) algorithm (Dempster et al.; 1977) to estimate the pa-
rameters in our model and infer the statuses of peptides and proteins, with
the statuses of proteins (7},) and peptides (P ;) as latent variables. The aug-
mented data for protein k take the form of Y;, = (X, nk, Tk, Pe1s - -+, Py )-
The details of the EM algorithm can be found in Appendix A.

To select a reasonable starting point for the EM algorithm, in the real

dataset, we initialize the parameters related to incorrect peptide identifi-
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cation (fo, fVIT, fVM ¢ and ¢y) using estimates obtained from the decoy
database (see Section 3.3 for details). For f;, we initialize the shift 4(?) =
ming ;(xy ;) — €, where € is a small positive number to ensure xj; — ’y(o) >0
for all identified peptides (in both real and decoy databases), and estimate «
and (3 using the sample mean and sample variance of the scores. We initialize
NTT and fVMC using the peptides that are identified in the real database
and are scored in upper 90% of the identifications to the real database. As
¢1 > c¢g, we choose ¢; = beg, where b is a random number in [1.5,3]. The
starting values of 7§ and 7 are chosen randomly from (0, 1). For each infer-
ence, we run the EM algorithm from 10 random starting points and report

the results from the run converging to the highest likelihood.
3. Results.

3.1. Simulation studies. We first use simulation studies to examine the
performance of our approach, and particularly to assess the potential for it to
improve on the types of 2-stage approach used by PeptideProphet and Pro-
teinProphet. Our simulations are based on simulating under models that are
based on our nested mixture model, and ignore many of the complications
of real data (e.g. degeneracy). Thus, their primary goal is not to provide
evidence that our approach is actually superior in practice. Rather the aim
is to provide insight into the kind of gains in performance that might be
achievable in practice, to illustrate settings where the product rule used by
ProteinProphet may perform particularly badly, and to check for robustness
of our method to one of its underlying assumptions (specifically the assump-

tion that the expected proportion of incorrect peptides is the same for all
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present proteins). In addition they provide a helpful check on the correctness
of our EM algorithm implementation.

At the peptide level, we compare results from our model with the peptide
probabilities computed by PeptideProphet, and the PeptideProphet proba-
bilities adjusted by ProteinProphet (see section 2.2). At the protein level, we
compare results from our model with three methods: the classical determinis-
tic rule that calls a protein present if it has two or more high-scored peptides
(which we call the “two-peptide rule”), and the two product rules (adjusted
and unadjusted; see section 2.2). Because the product rule is the basis of
ProteinProphet, the comparison with the product rule focuses attention on
the fundamental differences between our method and ProteinProphet, rather
than on the complications of degeneracy handling and other heuristic ad-
justments that are made by the ProteinProphet software.

As PeptideProphet uses Gamma for fy and Normal for fi, we follow this
practice in the simulations (both for simulating the data, and fitting the
model). In an attempt to generate realistic simulations, we first estimated
parameters from a yeast dataset (I<all et al.; 2007) using the model in sec-
tion 2, except for this change of fy and f1, then simulated proteins from the
estimated parameters (Table 1).

We performed three simulations, S1, S2 and S3, as follows.

S1: This simulation was designed to demonstrate performance when the
data are generated from the same nested mixture model we use for
estimation. Data were simulated from the mixture model, using the
parameters estimated from the real yeast data set considered below.

The resulting data contained 12% present proteins and 88% absent
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proteins, where protein length [ ~ exp(1/500).

S2: Here simulation parameters were chosen to illustrate a scenario where
the product rule performs particularly poorly. Data were simulated as
in S1, except for i) the proportion of present proteins was increased
to 50% (7§ = 0.5); ii) the distribution of protein length was modified
so that all present proteins were short (I € [100,200]) and absent
proteins were long (I € [1000,2000]); and iii) we allowed that absent
proteins may have occasional high-scoring incorrect peptide identifica-
tions (0.2% of peptide scores on absent proteins were drawn from f;
instead of f).

S3: A simulation to assess sensitivity of our method to deviations from
the assumption that the proportion of incorrect peptides is the same
for all present proteins. Data were simulated as for S1, except m ~

Unif(0,0.8) independently for each present protein.

In each simulation, 2000 proteins were simulated. We forced all present
proteins to have at least one correctly identified peptide. For simplicity only
one identification score was simulated for each peptide, and the ancillary fea-
tures for all the peptides (NMC=0 and NTT=2) were set identical. We ran
the EM procedure from several random initializations close to the simulation
parameters. We deemed convergence to be achieved when the log-likelihood
increased < 0.001 in an iteration. PeptideProphet (TPP version3.2) and
ProteinProphet (TPP version3.2) were run using their default values.

Parameter estimation

In all the simulations, the parameters estimated from our models are close

to the true parameters (Table 1). Even when absent proteins contain a small
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TABLE 1
Simulation parameters and parameter estimation in the simulation studies. The
simulation parameters are estimated from a yeast data. o is the proportion of incorrect
peptides on the absent proteins in the simulated data.

T co c1 0 T fo f1
S1 | True parameter 0.88 0.018 0.033 1 0.58 ((86.46,0.093, —8.18)  N(3.63,2.07?)
Estimated values | 0.87 0.018 0.032 - 0.58 G(86.24,0.093, —8.18)  N(3.57,2.052)
S2 | True parameter 0.5 0.018 0.033 0.998 0.58 ((86.46,0.093, —8.18) N (3.63,2.07%)
Estimated values | 0.55 0.018 0.034 - 0.56 G(83.78,0.096, —8.18)  N(3.71,2.082)
S3 | True parameter 0.88 0.018 0.033 1 Unif(0,0.8) G(86.46,0.093,—8.18) N(3.63,2.07?)
Estimated values | 0.88 0.018 0.034 - 0.40 ((85.74,0.094, —8.18)  N(3.68, 2.052)

proportion of high-scored peptides (S2) or the assumption of a fixed m is
violated (S3), our method still produces reasonable parameter estimations.

Tradeoff between true calls and false calls

We compared the performances of different methods by the tradeoff be-
tween the number of correct and incorrect calls made at various probability
thresholds. As a small number of false calls is desired in practice, the com-
parison focuses on the performance in this region.

At the peptide level, our model consistently identifies substantially more
(> 100 in all cases) true peptides than PeptideProphet at any controlled
number of false peptides in the range of 0-200 (Figure 4al, bl), in all the
simulations. This gain illustrates the potential for our one-stage model to
provide effective feedback of information from the protein level to peptide
level, to improve peptide identification accuracy.

At the protein level, our model consistently identifies more true proteins
than the adjusted product rule at any controlled number of false proteins in
the range of 0-50, in all simulations. (Figure 4a2, b2). In S2 the product rules
perform less well than the other two simulations. This poor performance is
anticipated in this setting, due to its assumption that correctness of peptides

on the same proteins are independent. In particular, when absent proteins



20 LI, MACCOSS AND STEPHENS

with big nj; contain a single high-scored incorrect peptide, the product rule
tends to call them present. When present proteins with small n; contain
one or two correct peptides with mediocre scores besides incorrect ones, the
product rule tends to call them absent. The examination of individual cases
confirms that most mistakes made by the product rule belong to either of
the two cases above.

It is interesting that although the adjusted product rule improves peptide
identification accuracy compared with the unadjusted rule, it also worsens
the accuracy of protein identification (at least in S1 and S3). This illustrates
a common pitfall of ad hoc approaches: fixing one problem may unintention-
ally introduce others.

Calibration of probabilities

Methods for identifying proteins and peptides should, ideally, produce ap-
proximately calibrated probabilities, so that the estimated posterior prob-
abilities can be used as a way to assess the uncertainty of the identifica-
tions. In all the three simulations the peptide probabilities from our method
are reasonably well calibrated, whereas the PeptideProphet probabilities are
not, being substantially smaller than the actual probabilities (Figure 5 a).
Our method seems to be better calibrated than the adjusted product rule
at the protein level (Figure 5 b). However, very few proteins are assigned

probabilities € [0.2,0.9], so larger samples would be needed to confirm this.

3.2. A standard mizture. Mixtures of standard proteins have been used
for assessing the performance of identifications. Although these mixtures
are known to be too simple to reflect the complexity of the realistic samples

and may contain many unknown impurities (Flias et al., 2005), they can
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nonetheless be helpful as a way to assess whether a method can effectively
identify the known components.

We applied our method on a standard protein mixture (Purvine et al.,
2004) used in Shen et al. (2008). This dataset consists of the MS/MS spectra
generated from a sample composed of 23 stand-alone peptides and trypsin
digest of 12 proteins. It contains three replicates with a total of 9057 spectra.
The experimental procedures are described in Purvine et al. (2004). We used
Sequest to search, with non-tryptic peptides allowed, a database composed
of the 35 peptides/proteins, typical sample contaminants and the proteins
from Shewanella oneidensis, which are known to be not present in the sam-
ple and serve as negative controls. After matching spectra to peptides, we
obtained 7935 unique putative peptide identifications. We applied our meth-
ods to these putative peptide identifications, and compared results, at both
the protein and peptide levels, with results from the same standard mixture

reported by Shen et al for both their own method (“Hierarchical Statisti-
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cal Method”; HSM) and for PeptideProphet/ProteinProphet. Note that in
assessing each method’s performance we make the assumption, standard in
this context, that a protein identification is correct if and only if it involves
a known component of the standard mixture, and a peptide identification is
correct if and only if it involves a peptide whose sequence is a subsequence
of a constituent protein (or is one of the 23 stand-alone peptides).

At the protein level all of the methods we compare here identify all 12
proteins with probabilities close to 1 before identifying any false proteins.
Our method provides a bigger separation between the constituent proteins
and the false proteins, with the highest probability assigned to a false protein
as 0.013 for our method and above 0.8 for ProteinProphet and HSM. At
the peptide level, our model shows better discriminating power than all the
other methods (Figure 6a). Again, we ascribe this better performance at the
peptide level to the ability of our model to effectively feedback information
from the protein level to the peptide level.

To assess calibration of the different methods for peptide identification, we
compare the empirical FDR and the estimated FDR (Figure 6a), where the
estimated FDR is computed as the average posterior probabilities to be ab-
sent from the sample for the identifications (Ffron et al., 2001; Newton et al.,
2004). None of the methods is particularly well-calibrated for these data:
our method is conservative in its estimated FDR, whereas the other meth-
ods tend to underestimate FDR at low FDRs. Our conservative estimate
of FDR in this case partly reflects the simplicity of this artificial problem.
Indeed, our method effectively separates out the real and not real peptides

almost perfectly in this case: 99% of peptide identifications are assigned
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probability either > 0.99 (all of which are real) or < 0.01 (less than one
percent of which are real). Thus for both these groups our method is effec-
tively calibrated. The conservative calibration apparent in Figure 6b reflects
the fact that the remaining 1% of peptides that are assigned intermediate
probabilities (between 0.01 and 0.99) are all real.

We emphasise that this standard mixture inevitably provides only a very
limited comparison of the performance of different methods. Indeed, the fact
that in this case all methods effectively correctly identify all the real proteins,
with no false positives, suggests that this standard mixture, unsurprisingly,
provides nothing like the complexity of most real data problems. On the
other hand, it is reassuring to see our method perform well on this problem,
and the results in Figure 6a do provide a nice illustration of the potential

benefits of effective feedback of information from the protein to peptide level.

3.3. Application on a yeast dataset. To provide comparisons on more

realistic data we also compared methods using a yeast dataset (Iall et al.,
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2007). Because the true protein composition of this dataset is unknown,
the comparisons were done by use of a decoy database of artificial proteins,
which is a commonly-used device in this setting (Elias and Gygi, 2007).
Specifically, in the initial step of matching spectra to peptides, each spec-
trum was searched against a combined database, containing both target (i.e.
real) proteins, and decoy (i.e. non-existent) proteins created by permuting
the sequences in the target database. This search was done using Sequest
(Eng, McCormack, and Yates, 1994). The methods are then applied to the
results of this search, and they assign probabilities to both target and de-
coy proteins. Since the decoy proteins cannot be present in the sample,
and assuming that their statistical behaviour is similar to real proteins that
are absent from the sample, a false discovery rate for any given probabil-
ity threshold can be estimated by counting the number of decoy proteins
assigned a probability exceeding the threshold.

The dataset contains 140366 spectra. After matching spectra to peptides
(using Sequest (Fng et al., 1994)), we obtained 116264 unique putative pep-
tide identifications. We used DTASelect (Tabb, McDonald, and Yates, 2002)
to map these peptides back to 12602 distinct proteins (the proteins were
found using DTASelect (Tabb et al., 2002)).

We compared our algorithm with PeptideProphet for peptide inferences
and actual ProteinProphet for protein inferences on this dataset. The HSM
method, whose computational cost and memory requirement are propor-
tional to the factorial of the maximum protein group size, encounters com-
putation difficulties on this dataset and failed to run, because this dataset

contains several large protein groups. We initialized our algorithm using the
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approach described in section 2.6, and stopped the EM algorithm when the
change of log-likelihood is smaller than 0.001. PeptideProphet and Protein-
Prophet were run with their default settings.

In this case the comparison is complicated by the presence of peptides
belonging to multiple proteins, i.e. degeneracy, which occurs in about 10%
of proteins in yeast. Unlike our approach, ProteinProphet has routines to
handle degenerate peptides. In brief, it shares each such peptide among
all its corresponding proteins, and estimates an ad hoc weight that each
degenerate peptide contributes to each protein parent. In reporting results,
it groups together proteins with many shared peptide identifications, such as
homologs, and reports a probability for each group (as one minus the product
of the probabilities assigned to each of the individual proteins being absent).
In practice this has the effect of upweighting the probabilities assigned to
large groups containing many proteins.

To make our comparison, we first applied our model ignoring the degener-
acy issue to compute a probability for each protein being present, and then
used these to assign a probability to each group defined by ProteinProphet.
We treated proteins that were not in a group as a group containing one pro-
tein. For our method, we assigned to each group the maximum probability
assigned to any protein in the group. This also has a tendency to upweight
probabilities to large groups, but not by as much as the ProteinProphet
calculation.

Note that the tendency of both methods to upweight probabilities as-
signed to large groups, although a reasonable thing to do, makes reliably

estimating the FDR more difficult. This is because, unlike the real proteins,
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the decoy proteins do not fall into homologous groups (i.e. each is in a group
by itself), and so the statistical behaviour of the decoy groups will not exactly
match those of the absent real protein groups. The net effect will be that,
for both methods, the estimates of the FDR based on the decoy comparison
will likely underestimate the true FDR. Further, we suspect that the amount
of underestimation of the FDR will be stronger for ProteinProphet than for
our method, because ProteinProphet more strongly upweights probabilities
assigned to large groups. As a result, comparing the estimated FDRs from
each method, as we do here, may give a slight unfair advantage to Protein-
Prophet. In any case, this rather subtle issue illustrates the severe challenges
of reliably comparing different approaches to this problem.

We assessed the methods by comparing the number of target and decoy
protein groups assigned probabilities exceeding various thresholds. We also
compared the number of decoy and target peptides assigned probabilities
exceeding various thresholds. The results are shown in Figure 7.

At a given number of decoy peptide identifications, our model identified
substantially more target peptides than PeptideProphet (Figure 7 a). Among
these, our method identified most of the target peptides identified by Pep-
tideProphet, in addition to many more not identified by PeptideProphet. For
example, at FDR=0 (i.e. no decoy peptides identified), our method identi-
fied 5362 peptides out of 5394 peptides that PeptideProphet identified, and
additional 3709 peptides that PeptideProphet did not identify.

For the protein idenfication, the methods identified similar numbers of real
protein groups at small FDRs (< 10 decoy proteins identified). At slightly

larger FDRs (> 10 decoy proteins identified) ProteinProphet identified more
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real protein groups (< 100) than our method. This apparent slightly superior
performance of ProteinProphet may be due, at least in part, to issues noted

above regarding likely underestimation of the FDR in these experiments.

4. Comparison with HSM on another yeast data. To provide
comparisons with HSM method on a realistic dataset, we compared our
method with HSM on another yeast dataset, which was original published
in Flias et al. (2005) and analyzed by Shen et al (Shen et al., 2008). We
were unable to obtain the data from the original publication; instead, we
obtained a processed version from Shen, which produces the results in Shen
et al (Shen et al., 2008). Because the processed data lacks of several key fea-
tures for processing by PeptideProphet and ProteinProphet, we were unable
to compare with PeptideProphet and ProteinProphet on this dataset.

This data set was generated by searching a yeast sample against a se-
quence database composed of 6473 entries of yeast (Saccharomyces cere-

visiae) and 22437 entries of C. elegans (Caenorhabditis elegans). In total,
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9272 MS/MS spectra were assigned to 4148 unique peptides. Following Shen
et al (Shen et al., 2008), we exclude 13 charge +1 peptides and fit peptides
with different charge states separately (charge +2: 6869 and charge +3:
2363). The rest of 4135 peptides consists of 3516 yeast peptides and 696
C. elegans peptides. These peptides map to 1011 yeast proteins and 876 C.
elegans proteins. Among all the peptides, 468 (11.3%) are shared by more
than one proteins and 77 peptides are in common between the two species.
Due to peptide sharing between species, 163 C. elegans proteins contain
only peptides that are in common with yeast proteins. These proteins and
peptides shared between species are removed at performance evaluation for
all methods of comparison.

We compare the performance of our method with Shen’s method for both
peptide inferences and protein inferences in Figure 4. Similar to the previ-
ous section, a false discovery rate for any given probability threshold can be
estimated by counting the number of C. elegans proteins assigned a proba-
bility exceeding the threshold, since the C. elegans peptides or proteins that
do not share common sequences with Yeast peptides or proteins cannot be
present in the sample. We assessed the methods by comparing the number
of yeast and C. elegans peptides or proteins assigned probabilities exceeding
various thresholds. The results are shown in Figure 4.

At a given number of C. elegans peptide identifications, our model iden-
tified substantially more yeast peptide identifications than HSM at small
FDR (< 100 C. elegans peptides). For example, at FDR=0, our method
identifies 516 peptides out of 522 peptides that are identified by HSM and

additional 2116 peptides that HSM did not identify. The methods identified
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similar numbers of yeast peptides at higher FDR (> 100 C. elegans pep-
tides). For the protein identification, in the range of FDR that we studied,
our method consistently identifies over 80 more yeast proteins than HSM
at a given number of C. elegans protein identifications, in addition to the
majority (e.g. 96.5% at FDR=0) of the yeast proteins identified by HSM.
Although ProteinProphet results reported by Shen et al (Table 1 in Shen
et al) appear to identify more yeast proteins than our method at a given
number of C. elegans proteins in the range they studied, without access to
the raw data it is difficult to gain insights into the differences. For exam-
ple, the information on whether the reported ProteinProphet identifications
are proteins or protein groups and which proteins are grouped together by
ProteinProphet are unavailable from the data we worked on. However, they
are critical for making comparisons on the same basis. The comparison with
proper handling of these issues (e.g. grouping our protein identifications as

in section 3.3) may lead to conclusions different from naive comparison.
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5. Discussion. We have presented a new statistical method for assess-
ing evidence for presence of proteins and constituent peptides identified from
mass spectra. Our approach is, in essence, a model-based clustering method
that simultaneously identifies which proteins are present, and which pep-
tides are correctly identified. We illustrated the potential for this approach
to improve accuracy of protein and peptide identification in both simulated
and real data.

A key feature of our nested mixture model is its ability to incorporate
evidence feedback from proteins to the peptides nested on them. This evi-
dence feedback helps distinguish peptides that are correctly identified but
with weak scores, from those that are incorrectly identified but with higher
scores. The use of a coherent statistical framework also avoids problems
with what we have called the ”product rule”, which is adopted in several
protein identification approaches (Nesvizhskii et al., 2003; Price, 2007), but
is based on an inappropriate assumption of independence of the presence and
absence of different peptides. It has been noted (e.g. (Sadygov et al., 2004;
Feng et al., 2007)) that the product rule tends to wrongly identify as present
long proteins with occasional high-scored incorrect peptides; our simulation
results (Figure 4-2b) illustrate this problem, and demonstrate that our ap-
proach does not misbehave in this way.

In recent work Shen et.al. (Shen et al., 2008) also introduced a nested
latent-variable-based model (HSM) for jointly identifying peptides and pro-
teins from MS/MS data. However, although HSM shares with our model
the goal of simultaneous modeling of peptides and proteins, the structure

of their model is different, and their approach also differs in several details.
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Among these differences, the following seem to us most important:

1. HSM accounts for degeneracy, whereas ours does not. We comment

further on this below.

. HSM includes all the scores for those peptide that match more than

one spectrum, whereas our model uses only the maximum score as a
summary of the evidence. Modeling all scores is obviously preferable
in principle, but in practice it is possible that it could actually de-
crease identification accuracy. We note two particular issues here: a)
Shen et al assume that, conditional on a peptide’s presence/absence
status, multiple scores for the same peptide are independent. This in-
dependence assumption will not hold in practice, and the costs of such
modeling errors could outweigh the benefits of using multiple scores;
b) HSM appears to condition on the number of spectra matched to
each peptide, rather than treating this number as an informative piece
of data. As a result of this conditioning, additional low-scoring hits to
a peptide will always decrease the probability assigned to that pep-
tide. This contrasts with our intuition that additional hits to a peptide
could, in some cases, increase confidence that it is present, even if these

hits have low scores.

. HSM incorporates only whether the number of hits to peptides in

a protein exceeds some threshold, h (which is set to 1 in their ap-
plications). In contrast our model incorporates the actual number of
(distinct) peptides hitting a protein using a Poisson model. In this way
our model uses more available information, and accounts for variations

in protein length. Note that modeling only whether the number of hits
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exceeds h has some undesirable consequences, similar to those noted
above for conditioning on the number of hits to a peptide. For exam-
ple, if A = 1, then a protein that has two hits, each with low scores,
will be assigned a higher identification probability than a protein that
is hit more than twice with low scores.

4. HSM conditions on the number of specific cleavages (NTT in our de-
velopment here) in each putative peptide. Specifically, their parameter
mi; () is the probability of a particular cleavage event occurring, condi-
tional on NTT. In contrast our model treats the NTT for each peptide
hit as observed data. This may improve identification accuracy be-
cause the distribution of NTT differs greatly for correct and incorrect

identifications (Figure 3).

We expect that some of these differences in detail, perhaps in addition to
other differences not noted here, explain the different performances of our
method and that of Shen et al on the standard mixture data and the yeast
data used in Shen et al (Shen et al., 2008). On the other hand, we agree
with Shen et al that comparisons like these are less definitive, and harder to
interpret, than one would like, because of the absence of good gold-standard
realistic data sets where the truth is known.

We emphasize that, despite its promise, we view the model we present
here as only a starting point towards the development of more accurate
protein and peptide identification software. Not only is the development
of robust fast user-friendly software a considerable task in itself, but there
are also important aspects of real data — specifically degeneracy, which is

prevalent in high-level organisms — that are not properly accounted for by our
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model. Currently, most existing approaches to handle degeneracy are based
on heuristics. For example, ProteinProphet groups the proteins with shared
peptides and assigns weights to degenerate peptides using heuristics. An
exception is Shen et al’s model (Shen et al.; 2008), which attempts to provide
a coherent statistical solution to the problem by allowing that a peptide
will be present in the digested sample if any one of the proteins containing
that peptide generates it, and assuming that these generation events are
independent (their equation (2)). However, because their model computes
all the possible combinations of protein parents, which increases in the order
of factorials, it is computationally prohibitive to apply their method on data
with moderate or high degree of degeneracy. It should be possible to extend
our model to allow for degeneracy in a similar way. However, there are
some steps that may not be straightforward. For example, we noted above
that our model uses NTT as observed data. But under degeneracy NTT for
each peptide is not directly observed, because it depends on which protein
generated each peptide. Similarly the number of distinct peptides identified
on each protein depends on which protein generated each peptide. While it
should be possible to solve these issues by introducing appropriate latent
variables, some care may be necessary to ensure that, when degeneracy is
accounted for, identification accuracy improves as it should.
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Appendix A. Here we describe an EM algorithm for the estimation of
U = (7, ™o, 71, 1, 0, 0 3,7, Co, cl)T and the protein statuses and the peptide
statuses. To proceed, we use T}, and (Py1,...,Pxp,) as latent variables,
then the complete log-likelihood for the augmented data Yy = (X, ng, Tk,
Pii,..., Ppp,) is

(5.1)

(v 1Y)

= Z { (1 — Ty)[log mg + log ho(ny, | I, ng > 0) + Z L — Pyi) log(mo fo(r,))+
= i=1

iPk Jog((1 — 7o) f1 (s, z))]}

ng
+ Z {Tk[log(l — ) +log ha(ng | i, ng > 0) + > (1 — Pyj)log(m fo(wk,i))+
k=1 i=1

zk: Pyilog((1 — 7?1)f1($k,¢))]}

i=1

E-step:

(5.2)

QU M) = BI° (W) | x, o)

N
= > P(T;, = 0){log m; +log ho(ny | I, ny. > 0)
k=1
N Nk
+ > P(Pyi = 0| Tj, = 0)log(mo fo(wr,:)) + Y P(Pri = 1| Ty = 0)log((1 — mo) f1(xk,4))}
i=1 =1
N
+ > P(Ty = 1){log(1 — m5) + log ha(ny, | I, g > 0)
k=1

+ > P(Pri =0T, =1)log(m fo(wr)) + Y P(Pri = 1| Tp = 1)log((1 — m1) f1(w,))}
i=1 =1
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Then

(5.3)

T,it) = E(Ty | xk,nk,\II(t))
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(5.4)
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(5.5)

(1 — w0 ()

o 150 @) + (1= 7 £ ()

[D(Pes) = E(Pri | Ty = 1,5, 90)

M-step:
Now we need maximize Q (¥, \I/(t)). Since the mixing proportions and the
distribution parameters can be factorized into independent terms, we can

optimize them separately. The MLE of the mixing proportion 7 is:

(T
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If incorporating ancillary features of peptides, we replace f;(xy,) with
FiCan ) f7e(nmeg ;) f7* (ntty ;) as in Section 2.5, where xy, is the identi-
fication score, nmcy; is the number of missed cleavage and ntty; is the
number of tryptic termini (with values s = 0,1,2). As described in Section
2.3, fo = N(u,0?) and f; = Gammal(a, 3,7). We can obtain closed form
estimators for fj as follows, and estimate f; using the numerical optimizer

optimize() in R.

SIS (= 0~ EP) + 00~ 1O (P |,
(5.9) p=

SRS |- )0 - B (P + 100 - 1P|

(5.10)

P D [(1 =T = I (Pe)) + TP (1 - f?’(Pk,i))} (2k, — o)?
g =

SIS |- 100 - 80P + 100 - 10 (PL)]
As described in Section 2.5, we discretise NMC, which usually ranges from

0 to 10, into states s = 0,1, 2, with s = 2 representing all values > 2. So the
MLE of fi'™€ is:

(5.11) FIme (e ;) = ——ot
' 2 0
s=0 %s
where
(5.12)
N At At LY ~(t
wgt) = Z Z(l—T,g ))(1—13 )(kai))l(nmck,i = s)—l—z ZT,E )(1—I£ )(Pk,i))l(nmcm =5s)
k=11i=1 k=11i=1
Similarly, the MLE of f]"" is:
( o
5.13) fime(nmey, ;) = ———
' Zgzo Ugt)



38 LI, MACCOSS AND STEPHENS

where
(5.14)
ShY X & 40 5(0)
= ZZ 1= (P )1 (e = )+ 5 S TO T (P )1 (nmey; = 5)
k=11i=1 k=1i=1

The MLE of f]”tt takes the similar form as fj"™¢, j=0,1, with states s =
0,1,2.
For hg and hq, the terms related to hg and hy in Q(¥, ¥') are:

(5.15) i 1 —Tj,)log ho(n i eXp(—COZk)(C(]lk)nk
| 2t s ol = 2 © (1= exp(—coly)
(5.16) i i log hy(ng) i eXp —ali)(erly)™

nk (1 —exp(—c1ly))

The MLE of the above does not have close form, so we estimate them using

optimize() in R.
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