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ABSTRACT

Bayesian methods provide attractive approaches to select relevant variables in mul-

tiple regression models, particularly in settings with very highly correlated variables.

For example, they are popular in genetic fine-mapping problems, aiming to iden-

tify the genetic variants that causally affect some phenotypes of interest. However,

Bayesian methods are limited by the computational speed and the interpretability

of the posterior distribution. Wang et al. (2020) presented a simple and computa-

tionally scalable approach to variable selection, the “Sum of Single Effects” (SuSiE)

model, which provides a Credible Set for each selection, making the results easy to

interpret. The SuSiE model requires access to individual genotypes and phenotypes.

In this dissertation, we provide a method to fit the SuSiE model using sum-

mary statistics from univariate regression results. To improve the accuracy and

power for variable selection, we further generalize the SuSiE framework to select

variables jointly for multiple outcomes and account for complicated effect size het-

erogeneity among outcomes. We provide multivariate variable selection methods

using individual-level data, sufficient statistics, and summary statistics. We illus-

trate the power and flexibility of our method using realistic numerical simulations

and real data applications.

xiv



CHAPTER 1

INTRODUCTION

Genome-wide association studies (GWAS) have successfully identified many genomic

regions containing risk variants associated with complex diseases and traits (e.g.

Hakonarson et al., 2007; Zeggini et al., 2007; Donnelly, 2008; Visscher et al., 2012;

Köttgen et al., 2013; Fritsche et al., 2016). However, the majority of the GWAS

reported associated variants are not causally affecting the trait of interest, but

rather correlated to the true causal variants through linkage disequilibrium (LD)

(Ott, 1999). To gain more precise biological understanding of these associations,

researchers have turned to fine-mapping methods (Spain and Barrett, 2015; Schaid

et al., 2018) to identify putative causal variants contributing to these diseases and

traits.

Genetic fine-mapping is often framed as a variable selection problem. Suppose y

is a centered quantitative phenotype vector for N individuals, X “ rx1 ¨ ¨ ¨xJ s is an

NˆJ column centered genotype matrix for N individuals at J genetic variants (typ-

ically Single Nucleotide Polymorphisms, or SNPs) in a genomic contiguous region.

Consider the multiple linear regression model:

y “Xb` e, (1.0.1)

where b is the J ˆ 1 vector of multiple regression coefficients, e is an N -vector of

error terms with distribution NN p0, σ
2IN q, σ

2 ą 0 is the residual variance, IN is

the N ˆN identity matrix, and Nrpµ,Σq denotes the r-variate normal distribution

1



with mean µ and variance Σ. We assume the non-zero effect variants are included in

the genotype matrix (either directly typed or well imputed). Assuming the effects b

are sparse and the absence of unmeasured confounders, performing variable selection

on b in regression model (1.0.1) identifies variants that causally affect the phenotype

y. In genetic fine-mapping, the variants can be very highly correlated and it is

challenging to identify the true causal variants from many other highly correlated

nearby variants.

A simple variable selection approach is stepwise conditional analysis (Friedman

et al., 2001, Section 3.3.3; Yang et al. 2012). It starts by identifying the variant

most correlated with the response. It then iterates, at each step, finding the next

most correlated variant conditional on the selected variants in previous steps. This is

continued until no significant variant remains in the associated region at a nominal or

Bonferroni-corrected significance level. This simple stepwise conditional approach is

widely used in fine-mapping applications (e.g. Allen et al., 2010; Trynka et al., 2011;

Flister et al., 2013; Astle et al., 2016). It provides a list of variants that could be

causal. However, when two variants are perfectly correlated and one of the variants is

the causal variant, it is impossible to distinguish which one should be selected since

both are correlated with the phenotype. Stepwise conditional analysis arbitrarily

selects one of the two, which loses information and leads to an incomplete list of

possible causal variants. Moreover, stepwise conditional analysis does not provide

any assessment of confidence in selected variants. There are many variable selection

methods suffering similar issues, for example, methods using penalized likelihood

(Tibshirani, 1996; Zou and Hastie, 2005; Tibshirani, 2011) and selective inference

2



(Taylor and Tibshirani, 2015; Lee et al., 2016; Berk et al., 2013). To overcome these

issues, the majority of current approaches to fine-mapping are based on Bayesian

variable selection methods (Mitchell and Beauchamp, 1988; George and McCulloch,

1997).

Bayesian variable selection in regression (BVSR) has been widely applied to ge-

netic fine-mapping and related applications (e.g. Meuwissen et al., 2001; Sillanpaa

and Bhattacharjee, 2005; Servin and Stephens, 2007; Hoggart et al., 2008; Stephens

and Balding, 2009; Logsdon et al., 2010; Guan and Stephens, 2011; Bottolo et al.,

2011; Carbonetto et al., 2012; Zhou et al., 2013; Kichaev et al., 2014; Hormozdiari

et al., 2014; Chen et al., 2015; Wallace et al., 2015; Moser et al., 2015; Benner et al.,

2016; Newcombe et al., 2016; Wen et al., 2016b; Lee et al., 2018; Wang et al., 2020).

BVSR quantifies uncertainty in the causal variants by taking into account patterns

of correlations among variants. It assigns a prior distribution to b that induces spar-

sity, and computes the posterior probability that variant j has non-zero effect in the

model (this is called posterior inclusion probability, or PIP).

Although the Bayesian approach is attractive to variable selection problem with

highly correlated variables, computing the posterior distribution is computationally

challenging. Some approaches exhaustive search all possible models involving a small

number of causal variants (Kichaev et al., 2014; Hormozdiari et al., 2014; Chen et al.,

2015), but this quickly becomes computationally infeasible as the number of possi-

ble causal variants increases in the model. Other approaches such as sophisticated

Markov Chain Monte Carlo or stochastic search algorithms can help (Guan and

Stephens, 2011; Wallace et al., 2015; Benner et al., 2016; Wen et al., 2016b; New-
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combe et al., 2016), but remain computationally intensive. Another challenge for

BVSR is to summarize and interpret the complex posterior distribution, especially

with highly correlated variants and many causal variants.

Motivated by the shortcomings above, Wang et al. (2020) introduced a novel

formulation of BVSR, Sum of Single Effects (SuSiE) model. The novel structure of

SuSiE suggests a simple and fast variational algorithm, Iterative Bayesian Stepwise

Selection (IBSS), whose computation scales linearly with the number of possible

causal variants. The SuSiE structure also naturally yields independent credible sets.

Each Credible Set is designed to capture one non-zero effect with high probability,

making the posterior results easy to interpret and ideal for guiding follow-up studies.

The definition of “Credible Set” is as follows,

Definition 1. A level-ρ Credible Set (CS) is defined to be a subset of variants that

has probability ě ρ of containing at least one effect variant (i.e. a variant with non-

zero effect).

The SuSiE model reports as many CSs as the data support, each CS contains

as few variants as possible. In the case where two variants (say, x1 and x2) are

completely correlated and one of them is causal, SuSiE will report a CS containing

both variants. This indicates that there is (at least) one causal variant, which is

either x1 or x2 but we cannot say which.

In Figure 1.1, we illustrate SuSiE output in a more realistic simulated fine-

mapping example from Wang et al. (2020). There are two variants with non-zero

effects. Because of the correlation structure between variants, the strongest marginal

association (SMA) is not one of the causal variants. Stepwise conditional analysis

4



0 200 400 600 800 1000

0
5

10
15

20
Marginal Associations

SNP

−
lo

g1
0(

p)

SNP 1

SNP 2

SMA

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

SuSiE 2 CSs identified

SNP

P
IP

L1: C=37/R=0.9722
L2: C=3/R=0.8535

Figure 1.1: Fine-mapping example using SuSiE. Two out of the 1,002 variants
have non-zero effects (red points, labeled “SNP 1” and “SNP 2” in the left-hand
panel). The strongest marginal association (SMA) is a non-effect SNP (yellow point,
labeled “SMA” in the left-hand panel). SuSiE finds two 95% CSs, each containing a
true effect variant.

would select the wrong variant (SMA) at the first step. SuSiE reports two high-purity

95% CSs, indicating there are (at least) two causal variants. Each CS contains a true

effect variant, and neither contains the SMA. The blue CS contains 3 variants and

one of them is the actual causal variant. The other green CS contains 37 variants

with minimum correlation 0.97. Because these 37 variants are strongly correlated,

we cannot say which one has non-zero effect.

SuSiE requires individual-level genotype and phenotype data, ty,Xu. In this

thesis, we generalize the SuSiE framework to do fine-mapping using summary statis-

tics and multi-trait fine-mapping. The dissertation consists of the following chapters.

From Chapter 2 to Chapter 4, we extend the SuSiE framework in several aspects.

In Chapter 2, we extend SuSiE to use sufficient statistics, which gives the same re-

5



sult as SuSiE but with different computation complexity. In Chapter 3, we modify

SuSiE model to use summary statistics from GWAS and an accurate correlation

matrix (also known as LD matrix). Some caveats are further discussed. In Chapter

4, we generalize SuSiE framework to do joint fine-mapping of multiple phenotypes

using summary statistics. Joint analysis of multiple phenotypes improves power and

precision to identify relevant variants (e.g. Shriner, 2012; Stephens, 2013).

In addition to the work on fine-mapping, in Chapter 5, we introduce two en-

hancements for mash (Multivariate Adaptive Shrinkage), a flexible empirical Bayes

multivariate association testing method (Urbut et al., 2019). The two enhancements

are all about properly including the error correlations among measurements in dif-

ferent conditions in the mash model.
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CHAPTER 2

SUSIE-SUFF: FINE-MAPPING USING SUFFICIENT

STATISTICS

In this chapter, we summarize the “Sum of Single Effects” (SuSiE) model introduced

by Wang et al. (2020), and the algorithm they introduced to fit this model, which

they called Iterative Bayesian Stepwise Selection (IBSS). We also describe a new,

equivalent algorithm for fitting the SuSiE model using sufficient statistics. Compared

with the original algorithm, our new algorithm can be computationally advantageous

when the sample size is large (e.g. for biobank-scale data, UK Biobank (Sudlow et al.,

2015)), because after initial computation of the sufficient statistics, the computations

at each iteration do not depend on sample size. The ideas in this chapter also form the

building blocks for subsequent extensions to use (non-sufficient) summary statistics

in Chapter 3.

2.1 The SuSiE model

The SuSiE model introduced in Wang et al. (2020) is based on an even simpler model,

the “single effect regression” (SER) model, so we begin by describing the SER model

before describing the SuSiE model.

2.1.1 The Single Effect Regression model

The SER is a multiple linear regression (1.0.1) in which exactly one of the regression

coefficients is non-zero. This simple idea of assuming exactly one effect dates back
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at least to Servin and Stephens (2007), and, despite its simplicity, variations on this

model have been used in many genomic applications related to fine-mapping (e.g

Veyrieras et al., 2008; Pickrell, 2014; Maller et al., 2012).

Specifically, Wang et al. (2020) considered the following SER:

y “Xb` e (2.1.1)

e „ Np0, σ2IN q (2.1.2)

b “ γb (2.1.3)

γ „ Multp1,πq (2.1.4)

b „ Np0, σ2
0q. (2.1.5)

Here Multpm,πq denotes the multinomial distribution obtained when m samples are

drawn with category probabilities given by π. Thus γ P t0, 1uJ is a J-vector with

exactly one non-zero element, and so b is also a vector with one non-zero element.

(We use the term “single effect vector” to refer to any vector with one non-zero

element, so both γ and b are single effect vectors.) The scalar b represents the value

of the one non-zero element in b. The prior inclusion probabilities, π “ pπ1, ¨ ¨ ¨ , πJ q,

which we assume fixed and known, give the prior probability for each variant j being

“the” non-zero effect. The prior variance of the single effect, σ2
0, and the residual

variance, σ2, are hyper-parameters that can be pre-specified or (more commonly)

estimated.
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The likelihood for σ2
0 and σ2 under the SER model is

LSERpσ
2
0, σ

2;yq :“ ppy|X, σ2
0, σ

2
q (2.1.6)

“ ppy|X, σ2, b “ 0q
ÿ

j

πjBFpy,xj ;σ
2, σ2

0q, (2.1.7)

where BFpy,xj ;σ
2, σ2

0q denotes the Bayes Factor for variant j being associated with

y (Servin and Stephens, 2007), which is given in (2.1.13) below. Maximum likelihood

estimates of the hyper-parameters can be obtained by maximizing this likelihood

using numerical optimization methods.

Given the hyper-parameters, the posterior distribution for b is easy to compute

analytically (Servin and Stephens, 2007; Wang et al., 2020), and is summarized in

Proposition 1.

Proposition 1. Consider the SER model with known σ2
0 and σ2. The posterior

distribution on b can be written in terms of univariate least-squares estimate of bj,

b̂j :“ x
ᵀ
jy{x

ᵀ
jxj, and its variance s2

j :“ σ2{x
ᵀ
jxj. Specifically, the posterior distri-

bution on b “ γb is

γ|y,X, σ2, σ2
0 „ Multp1,αq (2.1.8)

b|y,X, σ2, σ2
0, γj “ 1 „ Npµ1j , σ

2
1jq, (2.1.9)
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where

σ2
1j :“

1

1{s2
j ` 1{σ2

0

(2.1.10)

µ1j :“
σ2

1j

s2
j

b̂j (2.1.11)

αj “
πjBFpy,xj ;σ

2, σ2
0q

řJ
j1“1 πj1BFpy,xj1 ;σ

2, σ2
0q

(2.1.12)

BFpy,xj ;σ
2, σ2

0q “

g

f

f

e

s2
j

s2
j ` σ

2
0

exp

¨

˝

1

2

b̂2j

s2
j

σ2
0

σ2
0 ` s

2
j

˛

‚. (2.1.13)

The vector α gives posterior inclusion probabilities for the variants. Given α,

it is also straightforward to compute a level-ρ CS, which is a set of variants that

has probability at least ρ of containing the causal variant (Maller et al., 2012).

Specifically, CS is obtained by first sorting variants in decreasing order of αj , and

then including variants in the CS until their cumulative probability exceeds ρ. To

formalize the CS, let r “ pr1, ¨ ¨ ¨ , rJ q denotes the indices of the variants ranked in

order of decreasing αj , so that αr1 ě ¨ ¨ ¨ ě αrJ , and let Sk denote the cumulative

sum of the k largest PIPs. The level-ρ CS is

CSpα; ρq :“ tr1, . . . , rk0u, k0 “ mintk : Sk ě ρu. (2.1.14)

2.1.2 The Sum of Single Effects Regression model

While the SER model is attractive in its simplicity, the assumption of a single non-

zero effect is rather limiting. To address this, while preserving some of the compu-
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tational benefits of the SER model, Wang et al. (2020) introduced the SuSiE model,

which parameterizes the sparse vector b as a sum of single effect vectors:

y “Xb` e (2.1.15)

e „ Np0, σ2IN q (2.1.16)

b “
L
ÿ

l“1

bl (2.1.17)

bl “ γlbl (2.1.18)

γl „ Multp1,πq (2.1.19)

bl „ Np0, σ2
0lq. (2.1.20)

In this formulation L, which must be specified, is an upper bound on the number of

non-zero entries in b. Note that the model allows each single effect to have its own

variance, σ2
0l; if σ2

0l “ 0 then that effect disappears. In the special case L “ 1, the

SuSiE model becomes the SER model.

Wang et al. (2020) developed a simple algorithm for fitting the SuSiE model,

which they called Iterative Bayesian Stepwise Selection (IBSS). The idea behind IBSS

is that, given b1, ¨ ¨ ¨ , bL´1, fitting bL corresponds to fitting an SER model, which

is straightforward as described above. Thus the IBSS algorithm simply iterates this

procedure: it repeatedly computes the posterior distribution for bl under the SER

model given current estimates of other bl1 , l
1 ‰ l. The theoretical background for the

IBSS algorithm is established in details in Appendix B of Wang et al. (2020). In short,

the IBSS algorithm optimizes a variational approximation (VA) to the posterior dis-
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tribution for b1, ¨ ¨ ¨ , bL under the SuSiE model. The algorithm finds an approxima-

tion qpb1, ¨ ¨ ¨ , bLq to the posterior distribution ppost “ ppb1, ¨ ¨ ¨ , bL|X,y, σ2,σ2
0 q

by minimizing the Kullback-Leibler (KL) divergence from q to ppost. In SuSiE, the

approximation q is chosen to factorize into L independent components, each corre-

sponding to a SER model:

qpb1, . . . , bLq “
L
ź

l“1

qlpblq. (2.1.21)

The L single effects are assumed independent a posteriori. This allows ql to capture

the strong dependencies among elements of bl that are induced by the assumption

that exactly one element of bl is non-zero.

The hyper-parameters σ2
0 “ pσ

2
01, ¨ ¨ ¨ , σ

2
0Lq and σ2 are estimated using an em-

pirical Bayes approach. The prior variance for the l-th single effect is estimated by

maximum-likelihood before computing the posterior distribution for bl. The residual

variance σ2 is estimated by maximizing the expected likelihood under VA.

SuSiE summarizes the approximated posterior distribution qpb1, ¨ ¨ ¨ , bLq using

posterior inclusion probabilities (PIPs) and independent CSs.

2.2 SuSiE-suff : SuSiE using sufficient statistics

The IBSS algorithm in Wang et al. (2020) takes as input the data y and X. In

this section we describe a new, but equivalent, IBSS algorithm that instead takes as

input the sufficient statistics, which are given in the following Lemma.

Lemma 1. Given residual variance σ2, the sufficient statistics of the multiple linear
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regression (1.0.1) are XᵀX and Xᵀy. To estimate the residual variance σ2, the

sufficient statistics are XᵀX,Xᵀy,yᵀy and sample size N .

Proof. The likelihood for b and σ2 is

Lpb, σ2;y,Xq :“ ppy|X, b, σ2
q (2.2.1)

“ p2πσ2
q
´N{2 exp

ˆ

´
1

2σ2
}y ´Xb}2

˙

(2.2.2)

“ p2πσ2
q
´N{2 exp

ˆ

´
1

2σ2

`

yᵀy ´ 2bᵀXᵀy ` bᵀXᵀXb
˘

˙

. (2.2.3)

Given the residual variance σ2, it is clear the sufficient statistics for parame-

ters b are XᵀX and Xᵀy. The sufficient statistics for parameters b and σ2 are

XᵀX,Xᵀy,yᵀy and sample size N .

To develop an IBSS algorithm that uses these sufficient statistics, we compute

the posterior distribution for b under the SER model using sufficient statistics. We

define a function, SER-suff , that takes input as sufficient statistics and returns the

posterior distribution for b “ γb under the SER model with fixed hyper-parameters

σ2, σ2
0. We write it as

SER-suffpXᵀX,Xᵀy;σ2, σ2
0q :“ pα,µ1,σ

2
1 q, (2.2.4)

where α “ pα1, ¨ ¨ ¨ , αJ q is the vector of PIPs under SER, with αj :“ Prpγj “

1 |XᵀX,Xᵀy, σ2, σ2
0q, and µ1j , σ

2
1j are the posterior mean and variance of b given

γj “ 1. For later convenience, we use Lpb, σ2;XᵀX,Xᵀy,yᵀy, Nq and LSERpσ
2
0, σ

2;Xᵀyq

to denote the likelihood for b and σ2 (2.2.3) and the SER likelihood for σ2
0 and σ2
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(2.1.7) using sufficient statistics.

The IBSS algorithm using sufficient statistics is outlined in Algorithm 1, and we

call the SuSiE model fitting with the IBSS-suff algorithm as SuSiE-suff . When the

sufficient statistics are correctly computed using the column centered individual-level

data ty,Xu, the result from SuSiE-suff is same as applying the original IBSS algo-

rithm in Wang et al. (2020) to the original ty,Xu, which for brevity we call SuSiE.

However, the computational complexity of the SuSiE-suff and SuSiE algorithms

differ: the computational complexity of SuSiE is OpNJLq per iteration, whereas

SuSiE-suff is OpJ2Lq per iteration (and the number of iterations will be the same).

If N ą J , which can be the case in fine-mapping applications, then SuSiE-suff will

be faster. However, computing the matrix XᵀX — which is required for SuSiE-suff

but not for the original algorithm — is expensive, requiring OpNJ2q operations.

Thus in practice SuSiE-suff will only be preferred when N " J or when XᵀX has

been pre-computed.

Note that one can compute the sufficient statistics using the following commonly-

computed summary statistics from J simple linear regressions: b̂j “ x
ᵀ
jy{x

ᵀ
jxj with

standard error, ŝj , the sample LD matrix, the variance of y and sample size N . See

Appendix A.1 for details.

We have implemented Algorithm 1 in the R package susieR available at https:

//github.com/stephenslab/susieR.
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Algorithm 1 IBSS algorithm using sufficient statistics

Require: Sufficient Statistics XᵀX,Xᵀy,yᵀy and sample size N .
Require: Number of effects, L.
Require: A function SER-suffpXᵀX,Xᵀy;σ2, σ2

0q Ñ pα,µ1,σ
2
1q that computes

the posterior distribution for b under the SER model.
1: Initial settings of σ2, σ2

0 and posterior means b̄l “ 0, for l “ 1, . . . , L.
2: repeat
3: for l in 1, . . . , L do
4: uÐXᵀy ´XᵀX

ř

l1‰l b̄l1

5: σ2
0l Ð argmax LSERpσ

2
0l, σ

2;uq Ź Update σ2
0l (optional).

6: pαl,µ1l,σ1lq Ð SER-suffpXᵀX,u;σ2, σ2
0lq

7: b̄l Ð αl ˝ µ1l Ź “ ˝ ” denotes element-wise multiplication.

8: σ2 Ð argmax Eq
”

logLpb, σ2;XᵀX,Xᵀy,yᵀy, Nq
ı

Ź Update σ2

(optional).
9: until convergence criterion satisfied

return α1,µ11,σ
2
11, . . . ,αL,µ1L,σ

2
1L.
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CHAPTER 3

SUSIE-RSS: FINE-MAPPING USING SUMMARY

STATISTICS

Multiple regression models, such as the linear model y “ Xb ` e, are widely used

in genetic studies to relate a phenotype y to genotypes X, and many methods

have been developed to fit such models (e.g. Meuwissen et al., 2001; Bottolo et al.,

2010, 2011; Guan and Stephens, 2011; Wen et al., 2016b; Wang et al., 2020). These

methods naturally require access to the individual-level genotype and phenotype

data. However, in many genetic applications individual-level data can be difficult to

obtain, both for practical reasons (e.g. the need to obtain many data sets collected by

many different groups) and for reasons to do with consent and privacy. In contrast,

summary data, such as z scores from single SNP analysis, are much easier to obtain,

and many publications share such summary data through the Internet (e.g. Pasaniuc

and Price, 2017, Table 1). In addition, information on LD among SNPs is available

from public reference genotype panels such as Consortium et al. (2015). The ease

of access to such “summary data” has motivated the development of methods to fit

the multiple regression model using summary data (e.g. Hormozdiari et al., 2014;

Kichaev et al., 2014; Chen et al., 2015; Vilhjálmsson et al., 2015; Benner et al.,

2016; Mak et al., 2017; Lloyd-Jones et al., 2019). In this chapter we develop method

to fit the SuSiE model to such summary data. Because the method combines the

“regression with summary statistics” (RSS) likelihood from Zhu and Stephens (2017)

with the SuSiE model of Wang et al. (2020), we call it SuSiE-RSS.
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Our basic approach is similar to the approaches taken by previous fine-mapping

methods that use summary data (e.g. Hormozdiari et al., 2014; Kichaev et al., 2014;

Chen et al., 2015; Benner et al., 2016; Newcombe et al., 2016; Lee et al., 2018). The

main advantage of our method over these previous methods is that the SuSiE model

leads to fast and accurate fine-mapping. However, our analysis also highlights some

subtle issues that arise in dealing with non-invertible LD matrices, which have not

been addressed in previous work (Section 3.2).

We describe the SuSiE-RSS approach in Section 3.1. Section 3.3 shows the impor-

tance of having an accurate LD matrix. In Section 3.4, we describe a simple approach

to detect variants with flipped allele between summary statistics and reference panel.

In Section 3.5, we describe a refinement procedure for the IBSS algorithm. Section

3.6 shows the performance of SuSiE-RSS using numerical experiments. We discuss

future work in Section 3.7.

3.1 The SuSiE-RSS model

Following previous methods for fine-mapping from summary data (e.g. Hormozdiari

et al., 2014), we assume that we have access to the following summary data: i) z

scores from marginal tests of association between each SNP and the phenotype in

a GWAS sample; ii) an estimate R̂ of the LD (correlation) matrix among variants.

For example, R̂ could be the sample correlation matrix computed from the GWAS

samples if available, or computed from a suitable reference panel that is similar to

the GWAS study population.

Also following previous methods (e.g. Kichaev et al., 2014; Hormozdiari et al.,
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2014; Benner et al., 2016), we assume the model

ẑ|z, R̂ „ NJ pR̂z, R̂q, (3.1.1)

where z represents an unobserved J ˆ 1 vector of standardized true effects (also

known as the noncentrality parameter, or NCP). Intuitively this model captures an

important property of marginal z scores: because of LD, the observed marginal z

score for variant j, ẑj , does not represent the actual standardized true effect, but a

combined effect of all variants in LD with variant j, it is an “LD convolved” effect,

Epẑj |R̂q “
J
ÿ

i“1

rijzi, (3.1.2)

where rij is the pi, jq-th entry of R̂.

Various, more-or-less formal, justifications have been give for assuming that

(3.1.1) will hold approximately, both for z scores from quantitative phenotypes and

binary (case-control) data. For quantitative phenotypes, Hormozdiari et al. (2014)

argue for (3.1.1) using the usual marginal z scores

ẑj :“ b̂j{ŝj , (3.1.3)

where

b̂j :“ px
ᵀ
jxjq

´1x
ᵀ
jy, (3.1.4)

ŝ2
j :“ pNx

ᵀ
jxjq

´1
py ´ xj b̂jq

ᵀ
py ´ xj b̂jq. (3.1.5)
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(These expressions assume the phenotypes y and genotypes xj are all centered to

have mean 0.) In this case the NCPs are zj “
bj

b

xᵀjxj

σ , where bj and σ are defined

in (1.0.1).

For case-control data, Han et al. (2009) argue for (3.1.1) when the z scores are

computed using a two proportions test using balanced case-control samples. That is,

ẑj :“

?
Npf`j ´ f

´
j q

b

2fjp1´ fjq
, (3.1.6)

where f`j and f´j are the frequency of the variant j in case and control samples;

fj “
f`j `f

´
j

2 is the frequency of the variant j in the sample. In this case the NCPs

are zj “

?
Npp`j ´p

´
j q?

2pjp1´pjq
, where p`j and p´j are the frequency of the variant j in case

and control populations, pj “
p`j `p

´
j

2 . The two proportions test statistics (3.1.6) is

a scaled version of b̂j (3.1.4), where y is a binary vector with 1, -1 indicating the

case and control samples.

In brief, the assumptions underlying the use of (3.1.1) are i) the correlation of

response, y, with any single variant xj is small; ii) the LD matrix R̂ accurately

reflects the correlation of variants in the study samples; iii) the same samples are

used to compute all marginal z scores; and iv) genotypes used to compute summary

statistics are accurate, since we ignore the imputation error for imputed genotypes in

the model. See Zhu and Stephens (2017) for more precise derivations and discussion.
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3.1.1 Likelihood with invertible LD matrix

For model (3.1.1) to have a valid density, the LD matrix R̂ must be invertible. We

assume the LD matrix is invertible in Section 3.1. The non-invertible case is discussed

in Section 3.2.

Assuming the LD matrix is invertible, the density for ẑ is

ppẑ|z, R̂q “ p2πq´
J
2 |R̂|´

1
2 exp

ˆ

´
1

2
pẑ ´ R̂zqᵀR̂´1

pẑ ´ R̂zq

˙

, (3.1.7)

where |R̂| represents the matrix determinant. The density leads to the “Regression

with Summary Statistics” (RSS) likelihood for z,

LRSSpz; ẑ, R̂q :“ exp

ˆ

´
1

2
zᵀR̂z ` zᵀẑ

˙

. (3.1.8)

Note that the RSS likelihood (3.1.8) is a special case of the likelihood (2.2.3) with

XᵀX “ R̂, Xᵀy “ ẑ, σ2 “ 1 (for any values of yᵀy and N).

One nice property of distribution (3.1.1) shown by Benner et al. (2016) is that

the support for the model that a particular set of variants is causal depends only on

the marginal z scores of those causal variants, and the LD matrix between the causal

variants. We state it in the following proposition and the derivation is in Benner

et al. (2016).

Proposition 2. Let C and N be the set of causal and non-causal variants, respec-

tively, that is zC ‰ 0, zN “ 0. We partition the marginal z-scores ẑ into ẑC and

ẑN . The conditional distribution of ẑN given ẑC , zN “ 0 does not depend on zC ,
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i.e.

ppẑN |ẑC , zN “ 0, zC , R̂q “ ppẑN |ẑC , zN “ 0, R̂q. (3.1.9)

The Bayes Factor for assessing the support for the model with causal variants in C

against the null model is

BF :“
ppẑ|zN “ 0, zC ‰ 0, R̂q

ppẑ|z “ 0, R̂q
(3.1.10)

“
ppẑC |zC ‰ 0, R̂CCq

ppẑC |zC “ 0, R̂CCq
, (3.1.11)

where R̂CC is the LD matrix of the causal variants in C. The Bayes Factor uses only

the information about causal variants in C.

3.1.2 The Single Effect Regression model using Summary Statistics

As with SuSiE model using individual-level data (Wang et al., 2020), SuSiE-RSS

model is based on a simpler model, the “single effect regression” model using sum-

mary statistics (SER-RSS). The SER-RSS model assumes exactly one of the J vari-

ants has non-zero effect, that is,

ẑ „ NJ pR̂z, R̂q (3.1.12)

z “ γz (3.1.13)

γ „ Multp1,πq (3.1.14)

z „ Np0, ω2
q. (3.1.15)
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The single effect vector z has exactly one non-zero element (equals to z). The position

of the non-zero effect is determined by the binary single effect vector γ. The prior

variance of the single effect, ω2, can be pre-specified or estimated by maximizing

likelihood.

Under the SER-RSS model, the following corollary is an immediate consequence

of Proposition 2 with only one variant in the causal set C.

Corollary 1. Under the SER-RSS model, the posterior inference is independent of

the LD matrix R̂.

Given the prior variance of the single effect, the posterior computations to the

SER-RSS model follow straightforwardly using Proposition 1, in which b̂j “ ẑj ,

sj “ 1. A level-ρ CS, CSpα; ρq, is then computed using the posterior distribution on

z.

3.1.3 The Sum of Single Effects Regression model using Summary

Statistics

Conventional methods for sparse regression give a sparse prior on z that allows

for multiple non-zero entries (e.g. Hormozdiari et al., 2014; Kichaev et al., 2014;

Benner et al., 2016). However, the posterior distribution becomes intractable and

the computation becomes expensive. Here we use the “Sum of Single Effects” prior

(Wang et al., 2020) on NCP z, which parameterizes the sparse vector z as a sum of
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single effect vectors. The SuSiE-RSS model is

ẑ „ NJ pR̂z, R̂q (3.1.16)

z “
L
ÿ

l“1

zl (3.1.17)

zl “ γlzl (3.1.18)

γl „ Multp1,πq (3.1.19)

zl „ Np0, ω2
l q. (3.1.20)

There are at most L non-zero effects. Each single effect zl has its own variance, ω2
l .

Because the SuSiE-RSS model uses the sum of single effects prior and the RSS

likelihood (3.1.8) is a special case of the likelihood (2.2.3), we can easily fit the model

using the IBSS algorithm outlined in Algorithm 1 with inputs XᵀX “ R̂, Xᵀy “ ẑ

and fixed residual variance (σ2 “ 1). Of course this will not give the same result

as SuSiE-suff applied to the actual sufficient statistics; it is simply a convenient

way to re-use the sufficient statistic algorithm to fit the SuSiE-RSS model. The

IBSS algorithm finds an approximation qpz1, ¨ ¨ ¨ , zLq “
śL
l“1 qpzlq to the posterior

distribution ppost “ ppz1, ¨ ¨ ¨ , zL|ẑ, R̂,ω
2q by minimizing the Kullback-Leibler (KL)

divergence from q to ppost. We summarizes the approximated posterior distribution

qpz1, ¨ ¨ ¨ , zLq using posterior inclusion probabilities (PIPs) and independent CSs.

The SuSiE-RSS model is implemented in the R package susieR available at

https://github.com/stephenslab/susieR.
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3.2 Likelihood with non-invertible LD matrix

The LD matrix R̂ is assumed to be invertible in Section 3.1. However, the LD matrix

R̂ could be non-invertible because of the possible collinearity between variants. As

a result, the density for ẑ and the likelihood are not well defined. There are several

approaches to deal with non-invertible LD matrix.

Approach 1 The LD matrix is modified to be invertible, e.g. adding a small diagonal term

to R̂, R̂λ “ R̂ ` λI, λ is a small positive number (Hormozdiari et al., 2014;

Kichaev et al., 2014). The likelihood for z is

L1pz; ẑ, R̂λq :“ exp

ˆ

´
1

2
zᵀR̂λz ` z

ᵀẑ

˙

(3.2.1)

“ LRSSpz; ẑ, R̂λq. (3.2.2)

Approach 2 For model (3.1.1) to have a valid density, the variance-covariance matrix needs

to be invertible. We use the modified invertible LD matrix R̂λ only in the

variance part of (3.1.1), and keep the mean part unchanged. The likelihood

for z is

L2pz; ẑ, R̂, λq :“ exp

ˆ

´
1

2
zᵀR̂R̂´1

λ R̂z ` zᵀR̂R̂´1
λ ẑ

˙

. (3.2.3)

Approach 3 The variable is transformed into a lower dimension space, so the transformed

variable has a valid density (Lozano et al., 2017; Park et al., 2017). Suppose
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the LD matrix R̂ is positive semi-definite, the eigen-decomposition of R̂ is

R̂ “ QDQᵀ, (3.2.4)

where D is a diagonal matrix with eigenvalues d1 ě d2 ¨ ¨ ¨ ě dr ą 0, r is

the rank of R̂; Q is a J ˆ r matrix of eigenvectors corresponding to non-zero

eigenvalues, QᵀQ “ Ir. We transform the model (3.1.1) as follows,

D´1{2Qᵀẑ „ NrpD
1{2Qᵀz, Irq. (3.2.5)

The transformed data, D´1{2Qᵀẑ, become independent. The likelihood for z

using the transformed model is

L3pz; ẑ, R̂q :“ exp

ˆ

´
1

2
zᵀR̂z ` zᵀQQᵀẑ

˙

. (3.2.6)

The likelihood (3.2.6) is equivalent to the likelihood one would obtain by using

density (3.1.7), but replacing R̂´1 with the Moore–Penrose pseudo-inverse of

R̂, QD´1Qᵀ.

Approach 4 We use likelihood (3.1.8) even R̂ is non-invertible. Note that this function

exists, and is easily computed, for non-invertible R̂.

The four methods above are not equivalent in general, but they are connected.

Proposition 3 summarizes the connection between likelihoods.
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Proposition 3. Let R̂λ “ R̂` λI,

lim
λÑ0

L1pz; ẑ, R̂λq “ LRSSpz; ẑ, R̂q; (3.2.7)

lim
λÑ0

L2pz; ẑ, R̂, λq “ L3pz; ẑ, R̂q; (3.2.8)

lim
λÑ0

L3pz; ẑ, R̂λq “ LRSSpz; ẑ, R̂q. (3.2.9)

Proof. As λÑ 0, R̂λ Ñ R̂, (3.2.7) is trivial.

Next, we show (3.2.8). Let P “ QD1{2 with Moore-Penrose inverse P : “

D´1{2Qᵀ, we can write L2pz; ẑ, R̂, λq as follows,

L2pz; ẑ, R̂, λq “ exp

ˆ

´
1

2
zᵀPP ᵀ

pPP ᵀ
` λIq´1PP ᵀz ` zᵀPP ᵀ

pPP ᵀ
` λIq´1ẑ

˙

.

(3.2.10)

In the limit λ Ñ 0, P ᵀpPP ᵀ ` λIq´1 Ñ P : (Theorem 3.4 in Albert (1972)).

Therefore,

lim
λÑ0

L2pz; ẑ, R̂, λq “ exp

ˆ

´
1

2
zᵀPP :PP ᵀz ` zᵀPP :ẑ

˙

(3.2.11)

“ exp

ˆ

´
1

2
zᵀR̂z ` zᵀQQᵀẑ

˙

(3.2.12)

“ L3pz; ẑ, R̂q. (3.2.13)

Finally, we show (3.2.9). Since R̂λ is full rank, the matrix of eigenvectors Qλ P
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RJˆJ satisfies QλQ
ᵀ
λ “ IJ . Therefore, the likelihood for z is

L3pz; ẑ, R̂λq :“ exp

ˆ

´
1

2
zᵀR̂λz ` z

ᵀẑ

˙

. (3.2.14)

As λ goes to 0, L3pz; ẑ, R̂λq converges to LRSSpz; ẑ, R̂q.

As the small diagonal term λ goes to 0 in Approach 1 and 2, Approach 2 is

equivalent to Approach 3, Approach 1 is equivalent to Approach 4. Moreover, if we

use R̂λ in Approach 3 to do the transformation and take λ goes to 0, the likelihood

converges to likelihood (3.1.8), not the likelihood in Approach 3 (3.2.6).

The Approach 3 and 4 are equivalent when the observed z scores ẑ lies in the

subspace spanned by the eigenvectors of the LD matrix R̂ (i.e.QQᵀẑ “ ẑ). When

the observed z scores does not lie in the subspace spanned by the eigenvectors of R̂,

which could happen when R̂ is estimated from a reference panel, the Approach 3

and 4 are not equivalent. The Approach 3 transforms the z scores into the subspace

spanned by the eigenvectors of R̂, whereas Approach 4 uses the observed z scores

even it does not lie in the subspace spanned by the eigenvectors of R̂.

For Approach 1 and 4, the posterior inference is independent of the LD matrix

R̂λ or R̂ under the SER-RSS model (Corollary 1). However, this is not true for

Approach 2 and 3. The Approach 2 uses R̂ in the mean, but R̂λ in the variance.

Consequently, the inference depends on all observed z scores, LD matrix R̂ and the

extra diagonal term λ. The inference from Approach 3 depends on the LD matrix

as well, because of the QQᵀẑ in the likelihood (3.2.6).

We use Approach 4 in SuSiE-RSS, because the inference does not depend on
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the LD matrix under the SER-RSS model, and the likelihood is equivalent to the

likelihood in Approach 1 as λ goes to 0.

3.3 LD matrix

A key assumption in SuSiE-RSS model is that the LD matrix R̂ is an accurate

estimate of the correlation among SNPs in the original GWAS samples. Computing

the sample correlation matrix using the original genotype matrix, X, provides an

accurate correlation among SNPs in the sample, and it is the best LD we can obtain.

However, the original genotype data are not always publicly available for privacy

reasons, and researchers are not sharing the LD matrix from the GWAS analysis.

Typically, R̂ is estimated from some suitable public reference genotype panels, and

we hope that LD information from these reference panels could accurately represent

the correlations of SNPs in the study population. Benner et al. (2017) did a thorough

assessment about the influence of the reference panel, and concluded that inaccurate

LD information leads to an inflation of false positives. They showed the size of the

reference panel needs to scale with the GWAS sample size, and suggested a reference

panel of 1,000 individuals from the target population is adequate for a GWAS cohort

of up to 10,000 individuals.

To make some correction for the LD matrix obtained from the reference panel,

we use a simple method to modify the LD matrix. We use regularized LD matrix

R̃s “ p1 ´ sqR̂ ` sI, for some 0 ă s ă 1. The similar regularization for the LD

matrix is also used in covariance estimation (Ledoit and Wolf, 2004) and methods

related to summary data (e.g. Pasaniuc et al., 2014; Kichaev et al., 2014; Mak et al.,
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2017). In previous works, the parameter s is usually fixed at an arbitrary small

value, or chosen using cross validation. We estimate the parameter s by maximizing

likelihood under the null (z “ 0),

ŝ “ arg max
sPp0,1q

Npẑ; 0, p1´ sqR̂` sIq. (3.3.1)

When the LD matrix R̂ is computed using the original genotypes that were used

to compute the marginal z scores, the vector of observed marginal z scores lies in

the subspace spanned by the eigenvectors of R̂ approximately. The part of z scores

that lies outside the subspace spanned by the eigenvectors of R̂ is very small, thus

the estimated ŝ is small. If the LD matrix is obtained from the reference panel, its

accuracy is limited by the quality of the panel. The marginal z scores does not lie

in the subspace spanned by the eigenvectors of R̂, and the part of z scores that is

outside the subspace spanned by the eigenvectors of R̂ is large, thus the estimated ŝ is

larger. The estimated ŝ gives information about the consistency between the z scores

and LD matrix. To solve (3.3.1), we used numerical optimization (the Brent method

(Brent, 2002) implemented in the optim function in R). The main computational

expense is an initial eigen-decomposition of R̂, which is OpJ3q and thus non-trivial

if J is large. Because we found regularization typically provided small benefits in

SuSiE methods (see Section 3.6), our software sets s “ 0 as default and avoid this

computational expense.

In our earlier works, we explored modification for the LD matrix from reference

panels to make it more consistent with the GWAS z scores. As we refined our
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method, we found the modification could make things worse rather than better. We

include the details in Appendix B.1.

3.4 Detecting allele flips

A common mistake in fine-mapping with summary statistics is “allele flips”, where

different coding of the two alleles at a SNP are used in the study sample (used to

compute ẑ) and the reference panel (used to compute R̂). Reference and alternative

alleles may mismatch between summary statistics from GWAS and the reference

panel. Suppose two SNPs are perfectly positively correlated in the reference panel

(i.e. pairwise correlation equals 1), the corresponding z scores for the two SNPs should

be same with the same sign. But the reference and alternative allele is flipped for

one SNP in GWAS. Consequently, the z scores for the two SNPs have opposite sign

in GWAS and the z scores are not consistent with the LD matrix from the reference

panel.

To detect the variants with flipped allele, we use the likelihood ratio test. Based

on the model for ẑ with regularized LD matrix R̃ŝ “ p1´ ŝqR̂` ŝI,

ẑ|R̃ŝ, z „ NpR̃ŝz, R̃ŝq, (3.4.1)

the distribution of marginal z score for SNP j conditional on all other observed z

scores is

ẑj |ẑ´j , R̃ŝ, z „ Np´
1

Ωjj
Ωj,´j ẑ´j `

1

Ωjj
zj ,

1

Ωjj
q, (3.4.2)

in which Ω is the precision matrix, Ω “ R̃´1
ŝ , Ωj,´j is the j-th row of Ω omitting
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the j-th element, ẑ´j is the observed z scores without the j-th one. If SNP j is

either in strong LD with other SNPs (which implies 1{Ωjj « 0) or has small effect

(zj « 0), then this yields the approximation

ẑj |ẑ´j , R̃ŝ, zj “ 0 „ Np´
1

Ωjj
Ωj,´j ẑ´j ,

1

Ωjj
q. (3.4.3)

When there is no flipped allele and the LD matrix is estimated from the reference

panel, the distribution of the standardized differences between the observed and

predicted z score, tj :“ Ωjjpẑj`
1

Ωjj
Ωj,´j ẑ´jq, has longer tail than standard normal

Np0, 1q. Therefore, we use a mixture of normals to model the conditional distribution

empirically,

ẑj |ẑ´j , R̃ŝ, zj “ 0 „
K
ÿ

k“1

pkNp´
1

Ωjj
Ωj,´j ẑ´j ,

σ2
k

Ωjj
q. (3.4.4)

We take σ1, ¨ ¨ ¨ , σK to be a grid of fixed positive numbers with minimum value as 0.8,

maximum value as 2
b

maxpt2j q. We take σk “ 1.05σk´1. The mixture proportions

p “ pp1, ¨ ¨ ¨ , pKq are non-negative and sum to one. We estimate p by maximum

likelihood, which is a convex optimization problem and can be solved effectively using

mixsqp (Kim et al., 2020). The distribution (3.4.3) is a special case of (3.4.4) with

the grid of σ1 “ 1, K “ 1. The distribution (3.4.3) with s “ 0 is also used in z-score

imputation (Lee et al., 2013) and GWAS quality control (Chen et al., 2020).

We test the null hypothesis H0 : the sign of ẑj is correct v.s. the alternative
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hypothesis H1 : the sign of ẑj is flipped using likelihood ratio test,

LR :“

řK
k“1 p̂kNpẑj ;

1
Ωjj

Ωj,´j ẑ´j ,
σ2k
Ωjj
q

řK
k“1 p̂kNpẑj ;´

1
Ωjj

Ωj,´j ẑ´j ,
σ2k
Ωjj
q

. (3.4.5)

We apply the test for variants with z scores greater than 2 in magnitude.

We show one example in Figure 3.1. The summary statistics are obtained using

10,000 individuals from UK Biobank and simulated phenotypes. The LD matrix

is estimated from another 1,000 random individuals in UK Biobank. However, we

deliberately mismatched (“flipped”) the reference and alternative allele for one SNP

(yellow point in Figure 3.1). Using the resulting z scores and mismatched LD matrix,

SuSiE-RSS identifies two CSs, one containing the true signal, and another containing

the SNP with flipped allele. With the correct allele alignment, this false discovery

is avoided. Our diagnostic plot comparing each z score against its expected value

shows the yellow SNP as a potential outlier, and our logLR statistic identifies this

SNP as a likely allele flip (log LR = 9.01; no other SNP here has log LR exceeding

2).

3.5 Algorithm refinement

All SuSiE related models (i.e. SuSiE, SuSiE-suff , SuSiE-RSS) use the IBSS algorithm

to approximate the posterior distribution. The IBSS algorithm is optimizing the

variational objective function, known as the “evidence lower bound” (ELBO) (see

Wang et al. (2020) for details). Wang et al. (2020) pointed out although the algorithm

32



0 200 400 600 800 1000

−
5

0
5

10

Marginal Associations

SNP

z 
sc

or
es

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Result 
 with mismatched allele

SNP

P
IP

−5 0 5 10

−
5

0
5

10

Diagnostic Plot

Expected value

O
bs

er
ve

d 
z 

sc
or

es

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Result 
 with correct allele alignment

SNP

P
IP

Figure 3.1: Fine-mapping example with allele mismatch between GWAS
and reference panel. Results are from a simulated data set with p “ 1, 002 SNPs
with one SNP having a true effect (red) and one SNP having allele mismatched
between study and reference panel (yellow). Top left: z scores for each SNP; Top
right: PIPs computed by SuSiE-RSS using the mismatched summary data, with two
CSs highlighted in blue and green; SuSiE-RSS incorrectly identifies a CS containing
the mismatched (yellow) SNP. Bottom-left: Diagnostic plot plotting each observed
z score against its expected value. The mismatched SNP stands out as a potential
outlier. Bottom right: PIPs computed by SuSiE-RSS with correct allele alignment,
with CS highlighted in blue; SuSiE-RSS finds one CS, which contains the true effect
SNP, and the false positive CS is avoided.
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usually performs well, sometimes it can produce a poor fit, due to getting stuck in

a local optimum. Although this is rare, it can provide misleading results when it

occurs. In particular we found that the IBSS algorithm occasionally converges to

a solution with one or more false positive CSs (i.e. CSs containing all null SNPs)

and misses alternative explanations that avoid these false positives and have higher

objective value.

Motivated by this we developed a simple refinement procedure for finding and

comparing these alternative explanations. It is equally applicable for all methods

using the IBSS algorithm. We explain the details using SuSiE model. Based on a

previous SuSiE fit, we loop through all identified CSs. For each identified Credible

Set, CSk, we remove all SNPs in CSk and refit SuSiE model, tk. This forces SuSiE to

consider alternative explanations other than SNPs in CSk. Then we fit SuSiE model

with all SNPs but initializing at tk, which yields a new SuSiE model sk. Comparing

achieved ELBO for sk, k “ 1, ¨ ¨ ¨ , K and s, we take the model with the highest ELBO

and check all identified CSs again. This process is repeated until no improvements in

the objective occur. By construction, the refinement procedure produces a solution

whose objective is at least as big as the original IBSS solution. See Algorithm 2

for details. Since this refinement procedure involves re-fitting model using the IBSS

algorithm with different parameters, it incurs additional computational expense.
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Algorithm 2 Refinement procedure

Require: a SuSiE object, s, with K CSs

1: while TRUE do

2: for k Ð 1 to number of CSs in s do

3: Remove all SNPs included in the kth CS (set SNPs in CSk to have prior

weight 0) and fit SuSiE model, tk

4: Fit SuSiE model, sk, with initialization at tk

5: if maxk ELBOpskq ą ELBOpsq then

6: sÐ sk1 , where k1 “ argk max ELBOpskq

7: else return s

We use one example from our simulations to illustrate that the refinement proce-

dure (Algorithm 2) works well in a challenging fine-mapping setting. The simulation

details are in Section 3.6. The example is summarized in Figure 3.2. In this example,

the causal SNP 1 has moderate correlation with both SMA and causal SNP 2; the

correlation between SMA and SNP 2 is weak. The causal SNP 1 and SNP 2 have

opposite effects, therefore the SNP 2 cancels out some of the marginal effect of SNP

1, and the SNP with the strongest marginal association (SMA) is not one of the ac-

tual effect SNPs. The default IBSS algorithm yields three CSs, two of them do not

contain any true effect SNP (Figure 3.2, middle panel). Using the refinement steps,

it finds two CSs, neither containing the SMA, and each containing one of the effect

SNPs. The achieved ELBO from the refinement procedure becomes higher. The

default IBSS algorithm converges to a local optimum and the refinement procedure

helps it escape from the local optimum.
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Figure 3.2: Fine-mapping example to illustrate that IBSS algorithm with
additional refinement steps can deal with a challenging case. Results are
from a simulated data set with p “ 1, 001 SNPs. Two out of the 1,001 SNPs have
non-zero effects (red points, labeled “SNP 1” and “SNP 2” in the left-hand panel).
The strongest marginal association (SMA) is a non-effect SNP (yellow point, labeled
“SMA” in the left-hand panel). The IBSS algorithm with default settings (middle
panel), identifies three CSs, two of them false positives containing no true effect
SNPs (one contains the SMA). The refinement procedure finds two 95% CSs, each
containing a true effect SNP.

3.6 Numerical Comparisons

We performed numerical experiments using real genotype data from UK Biobank

(Sudlow et al., 2015; Bycroft et al., 2018) to mimic the real fine-mapping applica-

tion. There are 274,549 unrelated White British individuals after removing outlier

individuals and individuals with different self-reported and genetic sex. We randomly

selected 200 non-overlapping regions, each region contains around 1,000 SNPs. We

included SNPs with minor allele frequency greater than 0.01. We randomly sampled

50,000 individuals to simulate phenotypes and computed in-sample LD matrix. To

investigate the impact of misspecification of LD matrix, we randomly sampled an-

other 500 and 1,000 individuals as two reference panels. We assess the performance
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of SuSiE-RSS using in-sample LD matrix and reference LD matrices.

The simulation setting is similar to SuSiE simulations in Wang et al. (2020) and

we briefly describe it here. We column-standardized the genotype matrix X, so rare

SNPs have larger effects than the common SNPs in the original genotype scale. We

generated y under the multiple regression model (1.0.1). The number of non-zero

effects is specified by S. We randomly sampled S effect variants from t1, . . . , Ju and

generated S effects independently from Np0, 1q. We drew y „ NpXb, σ2IN q, where

σ2 achieves the specified PVE, PVE “
VarpXbq

σ2`VarpXbq
, Varp.q denotes sample variance.

For each SNP j, we fitted simple linear regression with y and xj and obtained the

estimated z score, ẑj . We generated data using S P t1, 2, 3u and PVE “ 0.005. In

total, we generated 200ˆ 3 “ 600 data sets.

We used Dynamic Statistical Comparisons (DSC) to simulate data and compare

different methods. More details of DSC are in https://stephenslab.github.io/

dsc-wiki/overview. The simulation code and results are available at https://

github.com/zouyuxin/dsc_susierss.

3.6.1 Posterior inclusion probabilities

Posterior inclusion probability (PIP) is a standard output for most fine-mapping

methods. Here we compare our method, SuSiE-RSS, with three other software that

are commonly used in fine-mapping: SuSiE (Wang et al., 2020), CAVIAR (Hormoz-

diari et al., 2014, version 2.2) and FINEMAP (Benner et al., 2016, version 1.4). Since

the sample size is large, we use SuSiE with sufficient statistics, which gives the same

result as individual-level data (see details are in Chapter 2). SuSiE-suff and SuSiE-
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RSS are implemented in R, CAVIAR and FINEMAP are all implemented in C++.

CAVIAR and FINEMAP implement similar Bayesian variable selection models with

different algorithms and priors on the effect sizes. CAVIAR exhaustively searches all

possible combinations of up to L non-zero effects among the J variants. FINEMAP

uses shotgun stochastic search to explore different combinations.

In CAVIAR, we set all prior inclusion probabilities to 1{J to match the default

settings used in other methods. We set the maximum number of causal SNPs to

the true value S in CAVIAR and FINEMAP. For FINEMAP, we also try to increase

the maximum number of causal SNPs to 4. For SuSiE-suff and SuSiE-RSS, we set

L “ 10, which is allowing maximum 10 causal SNPs.

We evaluate power versus False Discovery Rate (FDR). The FDR and power are

calculated as FDR :“ FP
TP`FP , power :“ TP

TP`FN , where FP, TP and FN denote

the number of False Positives, True Positives and True Negatives at a given PIP

threshold.

The SuSiE-suff method with the refinement procedure has lower FDR at a given

PIP threshold (Figure 3.3). In particular, among the SNPs assigned PIP « 1, where

the FDR after refinement is « 0 whereas the FDR without refinement is « 0.04. All

subsequent results in this chapter therefore use the refinement procedure.

In-sample LD matrix

Figure 3.4 shows Power vs FDR from all methods as PIP threshold varies, with

all methods run using the in-sample LD matrix. SuSiE-RSS performs similarly to

SuSiE-suff and FINEMAP, all of which outperform CAVIAR in these simulations.

38



Figure 3.3: Comparison of SuSiE-suff with and without the refinement
procedure. The plot summarizes Power versus FDR using the PIPs from SuSiE-
suff . The open circles in the highlight power versus FDR at PIP threshold of 0.95.
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Figure 3.4: Comparison of Power vs FDR for each method with in-sample
LD matrix. The plot shows how Power and FDR co-vary as PIP threshold changes.
Circles indicate results at PIP threshold 0.95.
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The close performance of SuSiE-RSS and SuSiE-suff is expected due to the use of

the in-sample LD and the low PVE in these simulations. With the in-sample LD

matrix, SuSiE-suff and SuSiE-RSS use the same XᵀX (differ by a factor of sample

size N). SuSiE-RSS uses marginal z scores ẑ as the Xᵀy in SuSiE-suff , which is a

good approximation when each variant has small correlation with the quantitative

phenotype y. SuSiE-suff estimates the residual variance σ2, which is approximately

variance of y when the sample size is large and the total PVE is small. Since

our simulation has large sample size and small total PVE, the information lost in

summary statistics is negligible.

Comparing the running time for different methods, SuSiE-RSS is faster than

FINEMAP and CAVIAR (Table 3.1), even with the additional burden of running

the refinement procedure.

Table 3.1: Runtimes in seconds

method mean min. max.

SuSiE-suff without refinement 1.40 0.40 18.61
SuSiE-suff with refinement 4.81 1.44 62.34
SuSiE-RSS without refinement 1.31 0.39 20.42
SuSiE-RSS with refinement 4.64 1.43 74.15
FINEMAP 12.92 1.00 42.93
FINEMAP L4 16.11 1.67 39.27
CAVIAR 1516.91 3.54 4831.95

LD matrix from reference panel

Next, we assess how methods performance change with use of a reference panel.

For each method, we tried using reference panels of 500 samples and 1,000 samples,

with no regularization, small regularization (s “ 0.001), or estimated regularization
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(Section 3.3). Results (Power vs FDR) are shown in Figure 3.5. The different meth-

ods responded differently to changes in the reference panel size and regularization.

FINEMAP and SuSiE-RSS both show notably better performance with the larger

reference panel, whereas CAVIAR performed about the same for both sizes of panel.

As a result, FINEMAP and SuSiE-RSS outperform CAVIAR with large reference

panel, but with small reference panel CAVIAR is competitive. Using reference panel

with 500 samples, FINEMAP with maximum 4 causal SNPs has much higher FDR

than the SuSiE-RSS model with maximum 10 causal SNPs (12% vs. 25% at PIP

threshold of 0.95). For FINEMAP, increasing the maximum number of causal SNPs

from oracle to 4, the FDR increases dramatically (from 6% to more than 25% at PIP

threshold of 0.95).

Regularization of the LD matrix improved the performance of FINEMAP, par-

ticularly FINEMAP L4 with smaller panel, but did not greatly impact SuSiE-RSS

or CAVIAR. The reasons for these differences is unclear to us.

The estimated ŝ is small when the LD matrix is estimated from the GWAS

samples. As the quality of the reference panel decreases (the size of the reference

panel decreases in the simulation), the estimated ŝ becomes larger (Figure 3.6).

3.6.2 Credible sets

SuSiE-suff and SuSiE-RSS produce multiple Credible Sets (CSs) for each region, each

aimed at capturing one effect SNP. The CSs with “purity” less than 0.5 are discarded,

where purity is defined as the smallest absolute correlation among all pairs of SNPs

within the CS. FINEMAP produces similar CSs in v1.4 and we discard the CSs
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(a) FINEMAP with oracle maximum
number of effects

(b) FINEMAP with 4 maximum effects

(c) CAVIAR with oracle maximum num-
ber of effects

(d) SuSiE-RSS with 10 maximum effects

Figure 3.5: Comparison of Power and FDR for each method with different
LD matrix. Each curve shows how Power and FDR co-vary as PIP threshold
changes. We used LD matrices estimated from reference panels of different sizes (500
and 1,000 samples) and with different regularization parameter s. Circles indicate
results at PIP threshold 0.95.
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Figure 3.6: Comparing estimated ŝ using different LD matrix.

with “purity” less than 0.5 as well. In contrast, CAVIAR produces one credible set

per region aiming to cover all effect SNPs, which is very different from our credible

set definition. Therefore, we compare CSs from SuSiE-RSS with SuSiE-suff and

FINEMAP with maximum 4 causal SNPs.

We assess the 95% CSs using several criteria: 1. the empirical coverage levels for

CSs, which is the proportion of CSs that contain an effect SNP; 2. power, which

is the proportion of true effect SNPs included in a CS; 3. median number of SNPs

in each CS; 4. median purity (Figure 3.7). By all metrics, the CSs from SuSiE-

RSS using in-sample LD performs similarly to SuSiE-suff and FINEMAP. Using

the LD matrix from reference panels, coverage and power decrease for all methods.

For the smaller reference panels (500) the coverage of all methods drops below 0.9,

emphasising the importance of using sufficiently large reference panels.
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Figure 3.7: Comparison of 95% credible sets from SuSiE-suff , SuSiE-RSS
and FINEMAP. Panels show coverage, power, median size and median purity.
These statistics are computed by pooling all CSs from all data sets. The error bars
in coverage and power plots show 2ˆ standard error.
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3.7 Discussion

In this chapter, we have presented a Bayesian approach to variable selection in mul-

tiple linear regression using summary statistics. Using simulated data, the results

from our method are comparable with existing methods. Our method is more com-

putationally efficient than existing methods (e.g. CAVIAR, FINEMAP). The method

provides a list of independent CSs, which is useful for follow-up studies and under-

standing disease biology.

Our method uses the IBSS algorithm. The IBSS works well in most of our fine-

mapping experiments, but we have observed it can get stuck in a local optimum

in some difficult settings. We have introduced a refinement procedure for the IBSS

algorithm to get out of the poor local optima, when there are significant findings

using the default algorithm. This refinement procedure can help avoid false positives.

However, it does not help with false negatives due to local optima. When there is no

significant finding using the default IBSS algorithm (e.g. Wang et al., 2020, change

point detection example), our refinement procedure does not change the result. In

this case, a better initialization may help, for example, using solution from lasso

or other variable selection methods. One could also develop better algorithm to

optimize the variational objective function.

Our simulation results highlight the importance of having an accurate LD matrix.

For all methods using summary statistics, the reliability of the fine-mapping results

depends heavily on the LD information. The false discovery rate increases when

the LD matrix is obtained from a small reference panel. Some methods are more

robust to misspecification than others. The regularization for the reference LD matrix
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(p1´sqR̂`sI) has slight improvement on the fine-mapping results. To better explore

the public available GWAS summary statistics, it is crucial to estimate LD matrix

from a large reference panel with similar ancestry to the GWAS sample, and it is

better to share the GWAS LD information.

We assume fixed and known prior inclusion probabilities in SuSiE-RSS, but

SuSiE-RSS can be easily extended to incorporate functional genomic annotation

data. Previous studies have shown that integrating functional data improves fine-

mapping performance (Kichaev et al., 2014; Wen et al., 2016a). We can allow the

prior inclusion probabilities depend on functional data, for example,

log

˜

Prpγj “ 1|η,Aq

Prpγj “ 0|η,Aq

¸

“ η0 `

M
ÿ

m“1

ηmAjm, (3.7.1)

where Ajm “ 1 when variant j is part of annotation m. The hyper-parameter η0

captures the baseline prior log odds for causality of any variant, ηm characterizes the

enrichment level of each genomic feature.

For binary phenotype, the justification for model (3.1.1) is based on z scores from

two proportions tests with equal case-control samples (Han et al., 2009). Nonetheless,

the marginal z scores for case-control study are usually from logistic regression (Chen

et al., 2016). We are not aware a formal derivation of the model for z scores from

logistic regression, although people do use univariate logistic regression z scores in

their fine-mapping analysis. One direction for future work is to check the SuSiE-RSS

performance using univariate logistic regression z scores. More ambitiously, one could

derive the RSS likelihood based on generalized linear models (McCullagh and Nelder,
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2019), using asymptotic theories of maximum likelihood estimator. The asymptotic

normality of summary statistics holds in a reasonably balanced case-control study.

However, because of the low prevalence of many diseases, case-control ratios are

often unbalanced (case:control ă 1:10) in GWAS. The unbalanced case-control ratio

violates asymptotic normal assumption for logistic regression and inflates Type I

error (Zhou et al., 2018). One solution to address this is using test statistics with

saddle point approximation (Kuonen, 1999), or Firth correction (Firth, 1993; Heinze

and Schemper, 2002). Both methods provide good control of Type I error for rare

binary traits (Zhou et al., 2018; Mbatchou et al., 2021).

To detect variants with modest genetic effects, meta-analysis of several GWASs

has become a common method to increase the sample size and power (e.g. Willer

et al., 2010; Lee et al., 2017). Meta-analysis combines individual-level data or sum-

mary statistics from different studies/populations. Using summary statistics from

meta-analysis, one strategy to do fine-mapping would be applying SuSiE-RSS with

sample size weighted correlation matrix. This strategy is simple, although we are

not sure about the impact of deviations from our model using meta-analysis results.

We have not investigated this in much detail. A more principled approach would be

to do joint fine-mapping of multiple studies/ethnics/traits (Kichaev and Pasaniuc,

2015). We describe an approach to do multi-trait fine-mapping in Chapter 4.
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CHAPTER 4

MULTI-TRAIT FINE-MAPPING 1

Genome-wide association analyses have been performed for thousands of phenotypes

and identified many genomic regions associated with complex traits (e.g. Canela-

Xandri et al., 2018; Kanai et al., 2018). Many statistical fine-mapping methods

have been developed to prioritize putative causal variants for a single phenotype

(e.g. Guan and Stephens, 2011; Kichaev et al., 2014; Hormozdiari et al., 2014; Chen

et al., 2015; Benner et al., 2016; Wen et al., 2016b; Newcombe et al., 2016; Lee

et al., 2018; Wang et al., 2020). A simple strategy to do fine-mapping with multiple

phenotypes is analyzing each phenotype separately, and then examining the overlap

of results among phenotypes. However, this trait-by-trait analysis fails to leverage

information across phenotypes to improve the power to detect the causal variants.

To address deficiencies of trait-by-trait analysis, it is desirable to perform multi-

phenotype fine-mapping. Multivariate analysis improves power when signals are

shared among multiple phenotypes; it increases power even when signals are not

shared, but the phenotypes are correlated (Stephens, 2013).

To date, there are few tools available for multi-trait fine-mapping because of the

computational challenge in performing inference in the model. To our knowledge,

the existing multi-trait fine-mapping methods using individual-level genotype and

multiple phenotype data are MT-HESS (Lewin et al., 2016) and atlasqtl (Ruffieux

et al., 2020), and the only existing multi-trait fine-mapping method using GWAS

1. THIS CHAPTER CONTAINS JOINT WORK WITH G. WANG, P. CARBONETTO AND
M. STEPHENS. SEE SECTION 4.8.
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summary data is PAINTOR (Kichaev et al., 2017). All these methods are based

on Bayesian multivariate multiple regression. Nonetheless, the existing approaches

are limited in practice for at least two reasons. First, the existing methods make

restrictive assumptions on non-zero effects. They assume the effect variants have

non-zero effects in all traits and the non-zero effects are uncorrelated among traits.

However, the effects could be specific to a subset of traits, and some traits may be

more correlated than others; for example, in our blood cell traits application (see

Section 4.6), there are variants with non-zero effects specific to red blood cells and

the effects in red blood cell traits are correlated. Second, the existing methods are

computationally intensive. MT-HESS uses MCMC sampling for Bayesian inference.

PAINTOR uses exhaustive search or Importance Sampling. Thus, MT-HESS and

PAINTOR are computationally slow or even impossible for more than 6 phenotypes.

atlasqtl uses variational approximation for posterior distribution, which makes it

possible to handle a large number of phenotypes. However, atlasqtl uses “fully

factorized” variational approximation, which is not suitable for highly correlated

variables (see Carbonetto et al., 2012; Wang et al., 2020, for discussions).

In this chapter, we describe a generalization of SuSiE to do multivariate variable

selection using individual-level genotype and phenotypes data, Multivariate Sum of

Single Effects model (mvSuSiE). We also describe mvSuSiE-suff that fit the mv-

SuSiE model with sufficient statistics, which gives exactly the results obtained by

applying mvSuSiE to individual-level data. We further develop method to fit the

mvSuSiE model using summary statistics, mvSuSiE-RSS, which requires GWAS z

scores for each phenotype and an estimated LD matrix. Our model efficiently per-

50



forms joint fine-mapping for multiple phenotypes while accounting for potentially

complicated patterns of heterogeneous effect size across traits. It uses flexible priors

allowing for arbitrary correlations in effect sizes among phenotypes (Urbut et al.,

2019). It performs efficient posterior inference via variational approximation, but

the parameterization is different from atlasqtl.

We describe the mvSuSiE model in Section 4.1. The fitting algorithm using

sufficient statistics (mvSuSiE-suff ) is described in Section 4.2. Section 4.3 describes

the mvSuSiE-RSS model. Section 4.4 summarizes the posterior inference. Section

4.5 shows the performance of mvSuSiE-RSS using simulations. Section 4.6 illustrates

the application of mvSuSiE-RSS to jointly fine-map 16 blood cell traits from UK

Biobank. Section 4.7 concludes and discusses future works.

4.1 The mvSuSiE model

Suppose R quantitative phenotypes are observed for N individuals, the standard

multivariate multiple regression model is

Y „ MNNˆRpXB, IN ,V q, (4.1.1)

where Y P RNˆR denotes a matrix of observed responses for N samples across R

phenotypes, X P RNˆJ denotes a matrix of genotype at J genetic variants observed

in the N samples,B P RJˆR denotes a matrix of regression coefficients for the J vari-

ants across R phenotypes, IN is the N ˆN identity matrix, and MNNˆRpM ,Σ,V q

denotes the matrix normal distribution with mean M P RNˆR, row covariances
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Σ P RNˆN and column covariances V P RRˆR. We assume column covariance

matrix V is invertible. An intercept in the multivariate regression is accounted for

by requiring that all the columns of Y and X are centered so that their means are

zero.

As in SuSiE model, the mvSuSiE model is based on a simpler model, the “mul-

tivariate single effect regression” (MSER) model. So we describe the MSER model

first.

4.1.1 The Multivariate Single Effect Regression model

The MSER model generalizes the “single effect regression” (SER) model to multi-

variate context. We write the coefficients B as

B “ γ b b. (4.1.2)

Here, xby denotes Kronecker product of vectors x and y, γ P t0, 1uJ is a vector of

indicator variables in which exactly one of the J elements is one and the remaining

are zero, and b P RR is the vector of regression coefficients for the R phenotypes. By

this definition, the coefficient matrix B P RJˆR has a single row containing non-zero

values, and these non-zero values are determined by b. We refer to B as a “single

effect matrix” because it captures the effects of a single variant.

As in SER, the priors for the indicator variables γ and regression coefficients b

52



are

γ „ Multp1,πq (4.1.3)

b „ g, (4.1.4)

where π “ pπ1, . . . , πJ q is a vector of prior inclusion probabilities (πj ě 0,
řJ
j“1 πj “

1).

In multivariate analysis, b represents effects for R phenotypes, and we want to

allow both shared and trait-specific effects. A natural method would be introducing

some indicators for which traits have non-zero effect, but this also introduce compu-

tational complexity. To flexibly capture the heterogeneity and correlations among

effects for different traits, we take the prior distribution of the coefficients, g, to be

a mixture of multivariate normals,

gpbq “
K
ÿ

k“1

ωkNRpb; 0, σ
2
0Ukq, (4.1.5)

in which each Uk is an RˆR covariance matrix that captures one pattern of effects,

and ω “ pω1, . . . , ωKq are mixture proportions (ωk ě 0,
řK
k“1 ωk “ 1). The hyper-

parameter σ2
0 controls the prior scale of the single effect, and it can be estimated

using an empirical Bayes procedure. We assess the significance of the signal for each

trait using the posterior on the effect sizes (see Section 4.4).
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In summary, the MSER model is

Y „ MNNˆRpXB, IN ,V q (4.1.6)

B “ γ b b, (4.1.7)

γ „ Multp1,πq, (4.1.8)

b „
K
ÿ

k“1

ωkNRp0, σ
2
0Ukq (4.1.9)

We assume V , π, ω, U “ tU1, ¨ ¨ ¨ ,UKu are known, or have been estimated

previously. For instance, the prior inclusion probabilities π can be fixed as uniform

among variants, π “ p1{J, ¨ ¨ ¨ , 1{Jq; the residual variance V can be estimated as the

empirical covariance matrix of Y , which is a “conservative” estimates under the null

(B “ 0); the parameters ω and U in the prior mixture can be fixed to the so-called

canonical mixture (Flutre et al., 2013), or they can be estimated using statistical

procedures (Section 4.3.4 and Urbut et al. (2019)).

Posterior under the MSER model

To derive posterior computations for the MSER model, it helps to start with Bayesian

simple multivariate regression (BMR) model,

Y „ MNNˆRpxb
ᵀ, IN ,V q, (4.1.10)

b „
K
ÿ

k“1

ωkNRp0, σ
2
0Ukq. (4.1.11)
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Here, x P RN is a vector of genotypes for one variant, b P RR is the (unknown) vector

of regression for the R phenotypes. The posterior distribution on b can be written

using least-squares estimate of b, denoted b̂, and its variance-covariance matrix, S,

b̂ “ pxᵀxq´1Y ᵀx (4.1.12)

S “ pxᵀxq´1V . (4.1.13)

The posterior distribution for b is summarized in Proposition 4.

Under the MSER model, the posterior distribution on γ and B is summarized

in Proposition 5.

Proposition 4. Consider the BMR model with known V , ω, U and σ2
0. The poste-

rior distribution for b is

ppb|Y ,x,V ,ω,U , σ2
0q “

K
ÿ

k“1

ω1kNRpb;µ1k,Σ1kq, (4.1.14)

where

Σ1kpxq :“ σ2
0UkpI ` σ

2
0S
´1Ukq

´1 (4.1.15)

µ1kpxq :“ Σ1kpxqS
´1b̂ (4.1.16)

ω1k :“
ωkBFpY ,x;V ,Uk, σ

2
0q

řK
k“1 ωkBFpY ,x;V ,Uk, σ

2
0q

(4.1.17)

BFpY ,x;V ,Uk, σ
2
0q :“

NRpb̂; 0,S ` σ
2
0Ukq

NRpb̂; 0,Sq
. (4.1.18)

The BFpY ,x;V ,Uk, σ
2
0q (4.1.18) is the Bayes Factor for variant with non-zero ef-
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fects from NRp0, σ
2
0Ukq.

The posterior first and second moments of b are

µmix
1 pY ,x;V ,ω,U , σ2

0q :“
K
ÿ

k“1

ω1kµ1kpxq, (4.1.19)

µmix
2 pY ,x;V ,ω,U , σ2

0q :“
K
ÿ

k“1

ω1k

“

µ1kpxqµ1kpxq
ᵀ
`Σ1kpxq

‰

. (4.1.20)

The Bayes Factor for comparing the model with the null model (b “ 0) is given

by

BFmix
pY ,x;V ,ω,U , σ2

0q “

K
ÿ

k“1

ωkBFpY ,x;V ,Uk, σ
2
0q. (4.1.21)

Proposition 5. Under the MSER model with known V , ω, U and σ2
0, the posterior

distribution for γ is

γ|Y ,X,V ,ω,U , σ2
0 „ Multp1,αq, (4.1.22)

where

αj “
πjBFmixpY ,xj ;V ,ω,U , σ2

0q
řJ
j“1 πjBFmixpY ,xj ;V ,ω,U , σ2

0q
, (4.1.23)

with BFmix given by (4.1.21). The posterior first and second moments of bj (the jth

row of B) are

Erbjs “ αjµ
mix
1 pY ,xj ;V ,ω,U , σ2

0q (4.1.24)

Erbjb
ᵀ
j s “ αjµ

mix
2 pY ,xj ;V ,ω,U , σ2

0q, (4.1.25)
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where µmix
1 and µmix

2 are the posterior first and second moments from the BMR

model, given at (4.1.19) and (4.1.20).

Estimating Prior Scalar

We estimate the prior scalar σ2
0 using an expectation-maximization approach (Demp-

ster et al., 1977). The update for σ2
0 is

σ2
0 “

K
ÿ

k“1

φk
1

řK
k1“1 φk1rankpUk1q

J
ÿ

j“1

αjtrpU
:

kµ
2
jkq, (4.1.26)

where U
:

k is the Moore–Penrose inverse of Uk, µ2
jk is the posterior second moment

for variant j with Uk as the prior (i.e.µ2
jk “ µ1kpxjqµ1kpxjq

ᵀ`Σ1kpxjq), φk is the

posterior weight of component k based on single effect regression,

φk :“
ωk

řJ
j“1 BFpY ,xj ;V ,Uk, σ

2
0q

řK
k1“1 ωk1

řJ
j“1 BFpY ,xj ;V ,Uk1 , σ

2
0q
. (4.1.27)
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4.1.2 The Multivariate Sum of Single Effects Regression model

To allow multiple effect variants, we parameterize coefficients B as the sum of L

“single effect matrices”. The mvSuSiE model is

Y „ MNNˆRpXB, IN ,V q (4.1.28)

B “

L
ÿ

l“1

Bl (4.1.29)

Bl
“ γl b bl (4.1.30)

γl „ Multp1,πq (4.1.31)

bl „
K
ÿ

k“1

ωkNRpb; 0, σ
2
0lUkq. (4.1.32)

The coefficients matrix B has at most L rows containing non-zero elements. Each

σ2
0l controls the prior scale of the l-th single effect, thus the single effects could on

different scales.

We extend the mvSuSiE model (4.1.28) - (4.1.32) to allow for missing values in

Y , see Appendix C.1 and C.2 for details. For simplicity, we consider Y without

missing values in this chapter.

4.2 mvSuSiE-suff : mvSuSiE using sufficient statistics

Wang et al. (2020), Appendix B, described a general variational approach to fit

additive effects models. The mvSuSiE model (4.1.28) – (4.1.32) is an additive effects

model, with each additive effect being a multivariate single-effect regression (Section
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4.1.1). Therefore applying the results from Wang et al. (2020) immediately produces

an IBSS algorithm for fitting the mvSuSiE model from the individual-level data

tY ,Xu. Analogous to the result for univariate SuSiE, this IBSS algorithm finds an

approximation qpB1, ¨ ¨ ¨ ,BLq “
śL
l“1 qpB

lq to the posterior distribution ppost “

ppB1, ¨ ¨ ¨ ,BL|Y ,X,ω,U ,σ2
0 q by minimizing the Kullback-Leibler (KL) divergence

from q to ppost.

As with univariate SuSiE, one can also fit the mvSuSiE model using sufficient

statistics, as we now describe. The sufficient statistics for B of the multivariate

multiple regression model (4.1.1) are XᵀX, XᵀY , which is clear from the likelihood

for B,

LpB;Y ,X,V q :“ ppY |X,B,V q

“ |2πV |´N{2 exp

ˆ

´
1

2
tr
”

V ´1
pY ᵀY ´ 2BᵀXᵀY `BᵀXᵀXBq

ı

˙

.

(4.2.1)

Algorithm 3 outlines the IBSS algorithm for mvSuSiE using sufficient statistics.

The main building block for this algorithm is a function, MSER-suff , that takes

input as sufficient statistics and returns the posterior distribution for B “ γ b b

under the MSER model. That is,

MSER-suffpXᵀX,XᵀY ;σ2
0l,U ,V ,ωq :“ pα, rµs, rµ2

sq, (4.2.2)

where the vector α gives the posterior inclusion probabilities under MSER (4.1.23);

the matrix rµs is the posterior mean of B (4.1.24); the array rµ2s contains the
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posterior second moment of B (4.1.25).

In summary, just as with univariate SuSiE, we have two IBSS algorithms for

fitting the multivariate model, one (mvSuSiE) based on the individual-level data

tY ,Xu and one (mvSuSiE-suff ) based on the sufficient statistics XᵀX, XᵀY . The

two algorithms will give the same result when the sufficient statistics are correctly

computed using the column-centered individual-level data tY ,Xu. However, the

computational complexity of the two algorithms differs. In our current implementa-

tion, when estimating the prior scalar parameters σ2
0 , the computational complexity

is OpLpNJR ` KJR3qq per iteration using individual-level data, and OpLpJ2R `

KJR3qq per iteration using sufficient statistics. With fixed prior scalar parameters

σ2
0 , we can precompute the matrix inversions involved in the posterior distribution

(4.1.15), which reduces the computational complexity to OpLpNJR ` KJR2qq per

iteration using individual-level data, and OpLpJ2R ` KJR2qq per iteration using

sufficient statistics. If X is column-standardized, we can remove the J multiplier

before R2 or R3 in the computational complexity, because the S (4.1.13) is same for

all variants.
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Algorithm 3 IBSS algorithm for mvSuSiE using sufficient statistics

Require: Sufficient Statistics XᵀX,XᵀY .

Require: Number of effects, L; priors, ω, U ; residual covariance, V and initial

estimates of σ2
0 .

Require: A function MSER-suffpXᵀX,XᵀY ;σ2
0l,U ,V ,ωq Ñ pα, rµs, rµ2sq that

computes the posterior distribution for Bl under the MSER model.

1: Initialize posterior means sBl “ 0, for l “ 1, . . . , L.

2: repeat

3: for l in 1, . . . , L do

4: U ÐXᵀY ´XᵀX
ř

l1‰l
sBl1

5: pαl, rµsl, rµ2slq Ð MSER-suffpXᵀX,U ;σ2
0l,U ,V ,ωq

6: sBl Ð αl ˝ rµsl Ź compute posterior mean by multiplying elements of αl

to rows of rµsl

7: σ2
0l Ð (4.1.26) Ź Update σ2

0l (optional).

8: until convergence criterion satisfied

return α1, rµs1, rµ2s1, . . . ,αL, rµsL, rµ2sL.

4.3 The mvSuSiE-RSS model

As with univariate SuSiE, we develop a method to fit the mvSuSiE model to summary

data. We assume all phenotype measurements have been performed in a single sam-

ple, so the marginal z scores are computed using the same samples for all phenotypes,

and the correlations among variants are same for all phenotypes. We assume that we

have an estimate R̂ of the LD matrix between the J variants. In addition, we assume
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we have access to the marginal z scores from linear models between each variant and

each phenotype. Let Ẑ denotes the JˆR matrix of observed marginal z scores, each

element ẑjr is defined as (3.1.3). To simplify notation, we assume the genotypes

for each variant are standardized, that is, x
ᵀ
jxj “ N . Assuming the correlation be-

tween phenotype and any single variant is small, the observed marginal z scores are

approximately Ẑ « 1?
N
XᵀY S´1, where S2 :“ diagpVarpy1q, ¨ ¨ ¨ ,VarpyRqq, and

Varp.q denotes the sample variance.

Consider the multivariate multiple linear regression model (4.1.1) with V “

VarpY q. We obtain the model for Ẑ by multiplying (4.1.1) by 1?
N
Xᵀ and S´1,

Ẑ „ MNJˆRpR̂Z, R̂,Cq, (4.3.1)

where Z “
?
NBS´1 represent an unobserved JˆR matrix of standardized true ef-

fects; R̂ “ 1
NX

ᵀX is the sample correlation matrix among variants; C “ S´1V S´1

is a correlation matrix that accounts for correlations among the measurements in the

R phenotypes. With only one phenotype, the model (4.3.1) reduces to the well-known

model for z scores for one phenotype (3.1.1) (e.g. Kichaev et al., 2014; Hormozdiari

et al., 2014; Chen et al., 2015; Benner et al., 2016; Zhu and Stephens, 2017).

Provided that the LD matrix R̂ is invertible, the density for Ẑ leads to the RSS

likelihood for Z,

LpZ; Ẑ, R̂,Cq :“ exp
 

´
1

2
tr

„

C´1
´

ZᵀR̂Z ´ 2ZᵀẐ
¯



(

. (4.3.2)

For the reasons we have discussed in Section 3.2, we use the RSS likelihood (4.3.2)
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even when R̂ is non-invertible.

We derive the multi-trait model for summary statistics (4.3.1) using the usual

marginal z scores from simple linear regressions. The model will hold approximately

even if Y is not normally distributed, e.g.Y is binary traits. It seems natural to

expect that a similar model could be derived for summary statistics from logistic

regressions, but we have not done this.

4.3.1 The Multivariate Single Effect Regression using Summary

Statistics

Analogous to mvSuSiE, the building block for our approach is the “multivariate single

effect regression using summary statistics” model (MSER-RSS), in which exactly one

of the J variants has a non-zero effect in some phenotypes. The MSER-RSS model

is

Ẑ „ MNJˆRpR̂Z, R̂,Cq (4.3.3)

Z “ γ b z (4.3.4)

γ „ Multp1,πq (4.3.5)

z „
K
ÿ

k“1

ωkNp0, σ
2
0Ukq. (4.3.6)

The “single effect matrix” Z P RJˆR has exactly one non-zero row, whose elements

are given by z. We notice that the RSS likelihood (4.3.2) is a special case of the

likelihood (4.2.1) with XᵀX “ R̂, XᵀY “ Ẑ, V “ C. Therefore, we can apply
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the posterior computation derived in Proposition 4 and 5 by making use of b̂j “ ẑj

(the j-th row of Ẑ), Ŝ “ C. As in univariate SER-RSS, the posterior computation

is independent of the LD matrix.

4.3.2 The Multivariate Sum of Single Effects Regression model using

Summary Statistics

Similar to mvSuSiE, we parameterize the effects matrix Z as a sum of “single effect

matrices” to allow multiple effect variants. The mvSuSiE-RSS model is

Ẑ „ MNJˆRpR̂Z, R̂,Cq (4.3.7)

Z “
L
ÿ

l“1

Zl (4.3.8)

Zl “ γl b zl (4.3.9)

γl „ Multp1,πq (4.3.10)

zl „
K
ÿ

k“1

ωkNp0, σ
2
0lUkq. (4.3.11)

The true standardized effect matrix Z has at most L rows containing non-zero ele-

ments.

We assume π, C, ω and U are known prior to mvSuSiE-RSS model fitting. We

fit the mvSuSiE-RSS model using the IBSS algorithm in Algorithm 3 with inputs

XᵀX “ R̂, XᵀY “ Ẑ and V “ C, because the RSS likelihood (4.3.2) is a special

case of the likelihood (4.2.1).
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4.3.3 Estimating the residual correlation matrix

The R ˆ R correlation matrix C accounts for residual correlations among measure-

ments in R phenotypes. The measured z scores could be correlated across R pheno-

types because there are uncorrected environmental effects in GWAS pre-processing

steps. Failing to capture the residual correlations in C creates false discoveries be-

cause the model attempts to match the residual correlations using effect covariance

matrices. The increase in false discoveries is clear from our simulations in Section

4.5.

If the phenotype matrix Y is available, we estimate C using the empirical corre-

lation matrix of phenotypes after removing the covariates effects. If the phenotype

matrix Y is unavailable, we estimate this correlation matrix using the fact that C

is the correlation matrix of the z scores under the null (Z “ 0). Suppose there are

P fine-mapping regions in total, let Ẑp denotes the observed z scores in region p.

For each fine-mapping region p, we identify the variants that close to null, i.e. the

variants with (absolute) z score ă 2 in all phenotypes, Np :“ tj : maxr |ẑ
p
jr| ă 2u.

The variants in Np could be highly correlated due to LD. Thus, we randomly select

a small number of variants from Np, Ip Ď Np. By pooling Ip across all fine-mapping

regions, we obtain a list of variants that are close to null and nearly independent.

We estimate C as the empirical correlation matrix of the z scores for the pooled

variants,

C “
1

řP
p“1 |Ip|

P
ÿ

p“1

ÿ

jPIp
ẑ
p
j ẑ

pᵀ
j , (4.3.12)

where ẑ
p
j is the j-th row of Ẑp.

65



4.3.4 Generating prior covariance matrices

By default, ω is fixed to uniform weight and U is fixed to the canonical covariance

matrices, which are described in detail in the Section “Generate canonical covariance

matrices Uk” in Urbut et al. (2019). The canonical covariance matrices include the

identity matrix (representing independent effects), a matrix of all ones (representing

equal effects in all conditions), matrices representing trait-specific effects, etc.

The prior covariance matrices can also include data-driven matrices. We use a

strategy similar to Urbut et al. (2019) to generate data-driven covariance matrices.

We first identify the top SNP for each fine-mapping region, which is the SNP with

the highest value of ẑ
p,max
j “ max1ďrďR |ẑ

p
jr|. Let Z̃ denotes the P ˆR matrix of z

scores for top SNPs, P is the number of fine-mapping regions. To extract the main

patterns in Z̃, we fit a mixture of multivariate normal distributions to Z̃ using the

Extreme Deconvolution (ED) algorithm from Bovy et al. (2011) and obtain estimates

of U and ω. We initialize the ED algorithm using data-driven covariance matrices

based on factors from Principal Component Analysis and sparse matrix factorization

(FLASH, Wang and Stephens (2018)) on Z̃.

4.4 Posterior inference

Based on the posterior distribution ofB orZ, mvSuSiE, mvSuSiE-suff and mvSuSiE-

RSS compute the posterior inclusion probability (PIP) for each SNP. We provide for-

mulae in terms of mvSuSiE-RSS model, the formulae for mvSuSiE and mvSuSiE-suff
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are similar. The PIP for each variant is

PIPj :“ P pzj ‰ 0|Ẑ, R̂q “ 1´
L
ź

l“1

p1´ αljq, (4.4.1)

where αlj is the PIP of SNP j in the l-th single effect, αlj “ P pγlj “ 1|Ẑ, R̂,Cq.

The PIPj gives the probability of SNP j having non-zero effect in at least one of the

traits.

Similar to univariate SuSiE/SuSiE-RSS, a Credible Set (CS) for the l-th single

effect can be computed as CSpαl; ρq (2.1.14). The CSpαl; ρq gives a subset of SNPs

that has probability ě ρ of containing one SNP with non-zero effect in at least one

phenotype. However, the CSpαl; ρq does not contain information on whether the

SNPs have non-zero effects in a specific phenotype. For this reason, we assess the

significance of CSpαl; ρq for each phenotype r. We first define the conditional local

false sign rate (clfsr) for variant j in single effect l, trait r as

clfsrljr :“ 1´maxrppostpz
l
jr ą 0|γlj “ 1q, ppostpz

l
jr ă 0|γlj “ 1qs, (4.4.2)

where ppost is the posterior distribution. The clfsr (Stephens, 2017) measures how

confident we can be in the sign of variant j in single effect l, trait r given that variant

j has non-zero effect. The significance of the l-th single effect credible set CSpαl; ρq

in trait r is then summarized using the weighted mean of clfsr across variants,

lfsrlr :“
ÿ

j

αljclfsrljr. (4.4.3)

67



For each single effect, the Credible Set CSpαl; ρq has a “significance level” (lfsrlr)

in each phenotype r. Therefore, for each phenotype, we have the corresponding

significant CSs.

The multi-trait fine-mapping methods mvSuSiE, mvSuSiE-suff and mvSuSiE-

RSS are available at https://github.com/stephenslab/mvsusieR.

4.5 Numerical Experiments

To investigate the performance of mvSuSiE-RSS, we performed simulations using

real genotype data from 248,980 UK Biobank unrelated White British individuals.

We randomly selected 600 non-overlapping regions. The regions vary from 400-Kb

to 1.6-Mb; each region contains 1,000 to 5,000 SNPs (including imputed SNPs) with

MAF (minor allele frequency) ą 0.001 and INFO (imputation quality score) ą 0.6.

The details about samples and regions are in Section 4.6. For each region, X is

a matrix of column standardized genotype data, in which each row corresponds to

an individual, and each column corresponds to a genetic variant. Standardizing the

genotype data corresponds to assuming the SNPs with lower MAF have larger effects

in the original genotype scale, and we have the same power to identify the common

causal SNPs as the rare causal SNPs (Wakefield, 2009). We simulated response Y

under the multivariate regression model (4.1.1). To mimic the real fine-mapping

regions in UK Biobank, we set the maximum PVE among traits as 0.05%. Given

priors on effects, and residual correlation matrix C, the simulation scheme is as

follows:

1. Sample the number of causal SNPs, S (see details below for each simulated
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scenario).

2. Sample the indices of the S causal SNPs uniformly from t1, ¨ ¨ ¨ , Ju.

3. For each causal SNP, draw b from
řK
k“1 ωkNp0,Ukq.

4. Set σ2 such that the maximum PVE among traits achieves the specified PVE,

i.e., solve for σ2 in PVE “
VarpXbrq

σ2`VarpXbrq
, where r “ arg maxr VarpXbrq and

Varp.q is the sample variance.

5. Draw Y „ MNpXB, I, σ2Cq.

Since the sample size is large, we computed marginal z scores for each trait using

plink 2.0 (Chang et al., 2015; Purcell and Chang, 2019). We computed the in-sample

LD matrix R̂ using LDstore (Benner et al., 2017) for each region.

We simulated data under three scenarios with different priors and residual corre-

lation matrices:

Scenario 1 Artificial mixture in 20 traits. The prior is a mixture of canonical patterns

of sharing (Figure 4.1), which includes trait-specific effects, effects sharing in

2 traits, effects sharing in block of traits and effects sharing in all traits with

different level of correlations. The residual correlation matrix, C, is the identity

matrix.

Scenario 2 UK Biobank 16 Blood Cell traits patterns. The prior is a mixture of data-

driven pattern from 16 UK Biobank Blood Cell traits (Figure 4.2). The residual

correlation matrix, C, is the empirical correlation between 16 blood cell traits.
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Scenario 3 Independent effects in 2 traits. The effect is generated from the identity matrix.

The residual correlation matrix, C, is the identity matrix.

In Scenario 1 and 2, each region could have 1, 2, 3, 4, 5 causal SNPs with

probability 0.3, 0.3, 0.2, 0.1, 0.1. In Scenario 3, each region contains 2 causal SNPs.

We compare our method using summary statistics, mvSuSiE-RSS, with mvSuSiE-

suff , SuSiE-suff and SuSiE-RSS (Chapter 3) under Scenario 1 and 2. We use the sim-

ple scenario with only 2 traits (Scenario 3) to compare mvSuSiE-RSS with PAINTOR

version 3.1 (Kichaev et al., 2017), since PAINTOR is computationally intensive with

a large number of traits. Because the sample size is large, we use mvSuSiE-suff

and SuSiE-suff , instead of mvSuSiE and SuSiE, to save memory and running time.

SuSiE-suff and SuSiE-RSS are designed for trait-specific fine-mapping, so we applied

them for each trait separately. We set the maximum number of causal SNPs to 10

(L “ 10) in SuSiE-suff , SuSiE-RSS, mvSuSiE-suff and mvSuSiE-RSS.

PAINTOR assumes the causal SNPs are shared across traits with independent

effects and independent residuals. PAINTOR integrates the functional annotation

data into the prior inclusion probabilities. Since we ran PAINTOR without any

annotation data, we created a “dummy” annotation file for each region with all 1’s.

Using the PAINTORmcmc option, the posterior inclusion probability is always 0 in

several test data sets. The same issue is reported in Github (https://github.com/

gkichaev/PAINTOR_V3.0/issues/5). Therefore, we set PAINTOR to enumerate all

possible configurations up to 2 causal variants, which is the oracle number of causal

variants in the Scenario 3 simulated data.

We applied mvSuSiE-suff with oracle mixture of priors and residual covariance
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Figure 4.1: Simulated structure for the “artificial mixture” in 20 traits for
Scenario 1. Each heatmap represents a covariance matrix Uk, wk gives the relative
frequency of Uk. The simulated signal has 20% chance to be shared in block (U1),
15% chance to be specific in trait 1 (U2), 30% chance to be shared in 2 traits (U3
and U4 with equal weights), 25% chance to be shared across traits with different
heterogeneity (U5 - U9 with equal weights).
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Figure 4.2: Simulated structure for the “UK Biobank Blood Cells” in 16
traits for Scenario 2. Each heatmap represents a covariance matrix Uk, wk gives
the relative frequency of Uk.
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matrix. We assessed the performance of mvSuSiE-RSS under different priors and

residual correlation matrices. We compared performance using the following priors:

1. oracle prior, the prior generating the signals; 2. default prior, a fixed mixture

of canonical structure regardless of the simulation scenario; 3. random effect prior,

the identity matrix, which represents independent effects in different traits; 4. fixed

effect prior, a matrix of all ones, which represents identical effects among all traits; 5.

ED prior, the data-driven prior using the procedure described in Section 4.3.4. The

ED prior successfully identify the main signal patterns in Scenario 1 and 2 (Figure

4.3 for Scenario 1, Figure 4.4 for Scenario 2). For example, in Scenario 1, the ED

prior captures the sharing in block pattern with relative frequency 0.27, the sharing

between trait 10 and 11 with relative frequency 0.1. The trait 1 specific pattern

and the sharing between trait 1 and 2 are collapsed into one covariance matrix, U3

in Figure 4.3. The simulated patterns about sharing across all traits are collapsed

into U1 in Figure 4.3. The patterns captured in ED prior agree with the patterns in

the oracle prior. We also checked performance using 4 different residual correlation

matrices: 1. the oracle residual correlation matrix; 2. the identity matrix; 3. the

empirical correlation matrix from the simulated traits; 4. the empirical correlation

matrix from z scores (4.3.12).

The simulation was conducted using DSC. The simulation code are in https://

github.com/gaow/mvarbvs/tree/master/dsc/mnm_prototype, the results are avail-

able at https://github.com/zouyuxin/mmbr-rss-dsc.
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Figure 4.3: Estimated “artificial mixture” prior for 20 traits via ED in mashr

package. Each heatmap represents a covariance matrix Uk, wk gives the relative
frequency of Uk.
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Figure 4.4: Estimated “UK Biobank Blood Cell traits” prior via ED in
mashr package. Each heatmap represents a covariance matrix Uk, wk gives the
relative frequency of Uk.
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4.5.1 Posterior Inclusion Probability

The joint fine-mapping methods, mvSuSiE-suff , mvSuSiE-RSS and PAINTOR, pro-

vide global PIP, which is the probability of a SNP having non-zero effect in at least

one trait. In contrast, the univariate fine-mapping methods, SuSiE-suff and SuSiE-

RSS, provide trait-specific PIP, which represents the probability of a SNP having

non-zero effect in one specific trait. To obtain global PIP for SuSiE-suff and SuSiE-

RSS, we use the maximum PIP among traits,

PIPj “ max
r

PIPjr “ P pzjr ‰ 0|ẑr, R̂q. (4.5.1)

We use the maximum rather than deriving the PIPj under the assumption that the

traits are independent, because the independence assumption leads to over-estimated

PIP. In this section, we assess the power, false discovery rate and calibration of PIP.

Power and False Discovery Rate

We first examine the power and false discovery rate (FDR) in discovering non-zero

effects using PIPs.

Using Scenario 3, we compare mvSuSiE-RSS with PAINTOR. The mvSuSiE-RSS

method was applied with default prior and residual correlation matrix estimated from

z scores. mvSuSiE-RSS has higher power and lower FDR than PAINTOR (Figure

4.5). The mean running time for PAINTOR is 1785.22 seconds, which is much slower

than mvSuSiE-RSS (average running time is 32.76 seconds). Therefore, we exclude

PAINTOR in the following assessments.
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Figure 4.5: Power versus FDR in Scenario 3. mvSuSiE-RSS was fitted using
default prior and residual correlation matrix estimated from z scores.
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In Scenario 1 and 2, our joint fine-mapping methods have higher power than uni-

variate fine-mapping methods (Figure 4.6). This suggests that leveraging association

strength across related traits increases the power to detect weakly associated causal

variants in single traits.

With oracle prior and residual covariance/correlation matrix, the model using

summary statistics, mvSuSiE-RSS, performs similarly to mvSuSiE-suff , which uses

complete information from genotype and phenotype data. This is expected because

both mvSuSiE-suff and mvSuSiE-RSS use the same in-sample LD matrix, and the

sample size is large in the simulation, so the information lost in the summary statistics

is negligible.

Using the identity matrix as residual correlation matrix increases FDR dramat-

ically in Scenario 2, in which the simulated residual correlation is a dense matrix.

The identity matrix ignores the residual correlation between traits. Since the residual

correlations between traits are ignored in the residual part of the model, the model

attempts to include these residual correlations in the signal part, which induces false

positives. Using the residual correlation matrix estimated from simulated phenotypes

or z scores close to null, the results are similar. The empirical correlation matrix of

phenotypes performs slightly better than the one from z scores, because it contains

more information than z scores.

The performance of mvSuSiE-RSS using the ED prior is similar to the oracle

prior. The mvSuSiE-RSS model with fixed effect prior has the lowest power in both

scenarios. This is because the signals are simulated from a mixture of covariance

structures. The fixed effect prior can only capture the signals that share identically
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among all traits, which fails to capture other signal patterns. Indeed, in Scenario 2,

there is no fixed effect pattern in the prior structure.

PIP calibration

Next, we assess PIP calibration for mvSuSiE-RSS with different priors and residual

correlation matrices. We group SNPs across all simulated data sets into 10 bins

according to their reported PIP. Then we compute the proportion of SNPs with

non-zero effects in at least one phenotype in each bin (i.e. observed frequency). For a

well-calibrated method, the observed frequency is approximately equal to the average

PIP for each bin.

With appropriate priors and residual correlation matrix, the PIPs from mvSuSiE-

suff and mvSuSiE-RSS are well-calibrated in Scenario 1 and 2 (Figure 4.7, 4.8). The

PIPs from mvSuSiE-RSS using the identity residual correlation matrix in Scenario

2 are anti-conservative as expected.

Using fixed effect prior in Scenario 2, the estimated observed frequencies have

large errors (the left plot on the third line in Figure 4.8). This is because the PIPs

from mvSuSiE-RSS with fixed effect prior are too conservative in Scenario 2, there

are not enough SNPs with PIP greater than 0.1 to estimate the observed frequency

in each bin. Therefore, the estimated observed frequencies are not accurate.

4.5.2 Credible Sets

From mvSuSiE-suff and mvSuSiE-RSS, we obtain multiple CSs, each aimed at cap-

turing one effect SNP with non-zero effect in at least one trait. PAINTOR does
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(a) Artificial Mixture 20 traits.
Results for different residual
correlation matrices. The prior
mixture is fixed as oracle.

(b) Artificial Mixture 20 traits.
Results for different priors. The
residual covariance matrix is fixed
as the empirical correlation from z
scores.

(c) UK Biobank 16 Blood Cell
traits. Results for different
residual correlation matrices.
The prior mixture is fixed as oracle.

(d) UK Biobank 16 Blood Cell
traits. Results for different pri-
ors. The residual covariance matrix
is fixed as the empirical correlation
from z scores.

Figure 4.6: Comparison of Power and FDR for different method in Scenario
1 and 2.
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Figure 4.7: Calibration of PIP for mvSuSiE-suff and mvSuSiE-RSS in
Scenario 1. The plots show the proportion of effect SNPs versus the mean PIP for
each bin. We expect all points are aligned in the diagonal line for a well-calibrated
method. The gray error bars show ˘2 standard errors. Points below the diagonal line
imply the corresponding PIPs are anti-conservative and points above the diagonal
line imply the PIPs are conservative.
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Figure 4.8: Calibration of PIP for mvSuSiE-suff and mvSuSiE-RSS in
Scenario 2.
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not produce CS, so it is excluded in the following comparisons. We assess the 95%

CSs produced by mvSuSiE-RSS and mvSuSiE-suff using empirical coverage, power,

median size of CS and median purity. The empirical coverage is the proportion of

CSs that contain an effect variant with non-zero effect in at least one trait. The

empirical power is the proportion of effect variants (in at least one trait) included in

a CS.

With appropriate priors and residual correlation matrix, the CSs from mvSuSiE-

suff and mvSuSiE-RSS have high coverage and high power (Figure 4.9). The CSs

from mvSuSiE-RSS with misspecified residual correlation (identity matrix in Sce-

nario 2) or mismatched prior (fixed effect prior) have lower coverage and power.

To compare with trait-specific CSs from SuSiE-suff and SuSiE-RSS, we assess

the significance of the CSs produced by mvSuSiE-suff and mvSuSiE-RSS using lfsr

(4.4.3) for each trait. For each trait, we obtain the significant CSs (lfsr ă 0.05).

The trait-specific CSs from mvSuSiE-suff and mvSuSiE-RSS outperform SuSiE-suff

and SuSiE-RSS in power, size and purity (Figure 4.10). The joint fine-mapping

model produces a smaller, purer CS than univariate fine-mapping. The simulation

demonstrates that fine-mapping resolution is improved by combining information

across traits.

4.5.3 Runtimes

The running time for different methods in Scenario 1 are similar to one another, and

it is summarized in Table 4.1.
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(a) Artificial Mixture 20 traits. Results for different residual correlation
matrices. The prior mixture is fixed as oracle.

(b) Artificial Mixture 20 traits. Results for different priors. The residual
covariance matrix is fixed as the empirical correlation from z scores.

(c) UK Biobank 16 Blood Cell traits. Results for different residual
correlation matrices. The prior mixture is fixed as oracle.

(d) UK Biobank 16 Blood Cell traits. Results for different priors. The
residual covariance matrix is fixed as the empirical correlation from z scores.

Figure 4.9: Compare 95% Credible Sets (CSs) from mvSuSiE-suff and
mvSuSiE-RSS. The coverage, power, size and purity are computed using all CSs
in all data sets. The error bars is computed as 2ˆ standard error.
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(a) Artificial Mixture 20 traits. Results for different residual correlation
matrices. The prior mixture is fixed as oracle.

(b) Artificial Mixture 20 traits. Results for different priors. The residual
covariance matrix is fixed as the empirical correlation from z scores.

(c) UK Biobank 16 Blood Cell traits. Results for different residual
correlation matrices. The prior mixture is fixed as oracle.

(d) UK Biobank 16 Blood Cell traits. Results for different priors. The
residual covariance matrix is fixed as the empirical correlation from z scores.

Figure 4.10: Compare 95% trait-specific Credible Sets (CSs) from SuSiE-
suff , SuSiE-RSS, mvSuSiE-suff and mvSuSiE-RSS. The coverage, power,
size and purity are computed using all CSs in all traits in all data sets. The error
bars is computed as 2ˆ standard error.
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Table 4.1: Runtimes in seconds with 20 traits. mvSuSiE-suff and mvSuSiE-
RSS were fitted using default priors. The residual covariance matrix in mvSuSiE-suff
is the empirical covariance matrix of phenotypes. The residual covariance matrix in
mvSuSiE-RSS is the empirical correlation matrix of from z scores (4.3.12).

method mean min. max.
mvSuSiE-suff 75.21 20.66 333.86
mvSuSiE-RSS 75.58 17.95 279.09
SuSiE-suff 105.76 15.44 305.50
SuSiE-RSS 113.55 14.46 311.09

4.6 Fine-mapping on UK Biobank Blood Cell traits

To evaluate mvSuSiE-RSS on a real fine-mapping problem, we jointly analyzed 16

blood cell traits in UK Biobank. In this section, we describe the data preparation

process, summarize the mvSuSiE-RSS results and illustrate mvSuSiE-RSS on some

specific example regions.

4.6.1 UK Biobank Data

UK Biobank is a prospective cohort study with data on approximately 500,000 indi-

viduals from the United Kingdom, aged between 40 and 69 at recruitment (Sudlow

et al., 2015; Bycroft et al., 2018). We choose 16 blood cell traits because they tend

to be all measured for the same samples and there are some fine-mapping results for

some of the blood cell traits that we can compare with (Astle et al., 2016; Ulirsch

et al., 2019; Vuckovic et al., 2020). The 16 traits are summarized in Table 4.2. The

cell type for each trait is based on Vuckovic et al. (2020).

There are 248,980 White British unrelated individuals after removing individuals

with missing traits, mismatches between self-reported and genetic sex, pregnancy and
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Table 4.2: UK Biobank blood cell traits.

Abbreviation Long Name Cell Type

WBC# White blood cell count Compound white cell
RBC# Red blood cell count Mature red cell
HGB Haemoglobin concentration Mature red cell
MCV Mean corpuscular volume Mature red cell
RDW Red blood cell distribution width Mature red cell
PLT# Platelet count Platelet
PCT Plateletcrit Platelet
PDW Platelet distribution width Platelet

LYMPH% Lymphocyte % Compound white cell
MONO% Monocyte % Compound white cell
NEUT% Neutrophill % Compound white cell

EO% Eosinophill % Compound white cell
BASO% Basophill % Compound white cell
RET% Reticulocyte % Immature red cell
MSCV Mean sphered cell volume Mature red cell
HLR% High light scatter reticulocyte % Immature red cell

any of the following diseases in hospital in-patient data: leukemia, lymphoma, bone

marrow transplant, chemotherapy, myelodysplastic syndrome, anemia, HIV, end-

stage kidney disease, dialysis, cirrhosis, multiple myeloma, lymphocytic leukemia,

myeloid leukemia, polycythaemia vera, haemochromatosis. We also excluded out-

liers defined by UK Biobank. The traits were inverse transformed to a standard

normal distribution. Because we would jointly model the 16 blood cell traits, we

discarded outliers in the multivariate normal distribution. We measured the Ma-

halanobis distance between the observation and the multivariate normal Np0,Σq,

where Σ is the empirical covariance matrix of the blood cell traits. We discarded

samples with Mahalanobis distance falling into the upper 0.01 quantile of χ2
16 distri-

bution. We included SNPs with INFO ą 0.6 and MAF ą 0.001 in association studies
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(Weissbrod et al., 2020). We performed a full GWAS using plink2.0 (Chang et al.,

2015; Purcell and Chang, 2019) controlling for the top 10 PCs, sex, age, age2, UK

Biobank assessment centre and genotype measurement batch.

To select regions for fine-mapping in multiple traits, we first selected regions for

each trait. For each trait, we derived regions as ˘ 250 kb centered at the top SNP,

until we included all significant SNPs (p ă 5 ˆ 10´8). We merged the overlapping

regions together. The HLA region was excluded (chr6: 25Mb - 36Mb) because of

the complexity of this region (e.g. Consortium et al., 1999; Horton et al., 2004). To

define regions for multivariate fine-mapping, we used all regions from each phenotype

and merged overlapping regions, which produced 975 regions in total. The regions

varied from 400 Kb to 8.7 Mb, each contains 93 to 36,605 SNPs. For each region,

we computed the in-sample LD matrix R̂ using LDstore (Benner et al., 2017).

4.6.2 Multivariate fine-mapping

We applied mvSuSiE-RSS to fine-map each region. To specify the residual correlation

matrix, C, we randomly selected 2 variants in each region, the selected variants have

(absolute) z scores ă 2 in all traits. We estimated the residual correlation matrix C

by (4.3.12). The prior covariance matrices and the corresponding mixture weights

were estimated from the data using the ED procedure described in Section 4.3.4.

The ED algorithm was initialized using both data-driven and canonical covariance

matrices.

Figure 4.11 summarizes the identified patterns from ED procedure. The identified

primary pattern shows effects are correlated among red blood cells (Figure 4.12),
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Figure 4.11: Estimated UK Biobank 16 Blood Cell traits prior via ED in
mashr package. Each heatmap represents a covariance matrix Uk, wk gives the
relative frequency of Uk. Traits are color-coded by cell types.
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(b) Prior Component 2
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Figure 4.12: Summary of patterns identified by ED in mashr package. For
each covariance matrix Uk, the figure shows the heatmap of Uk, and bar plots of
the top eigenvectors of Uk. Traits are color-coded by cell types. Component (a)
reflects effects sharing among red cells. Component (b) captures correlations among
compound white cells and platelet. 90



(c) Prior Component 3
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Figure 4.12: Summary of patterns identified by ED in mashr package (cont.).
Component (c) captures platelet effects. Component (b) captures compound white
cells effects.
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MCV is positively correlated with MSCV, but negatively correlated with RBC#.

The second prior component captures correlations among effects for compound white

cells and platelet cells. The most common types of white blood cells are neutrophill

and lymphocyte. The NEUT% and LYMPH% are negatively correlated, because the

traits are about the percentages of white blood cells, a genetic variant that increases

one trait naturally decreases the other. The third covariance matrix shows the effects

are correlated among platelet; the platelet count is negatively correlated with platelet

distribution width. Other prior components capture less prevalent patterns, such as

trait-specific effects.

From mvSuSiE-RSS, there are 954 regions, out of 975, contain at least one 95%

CS. The 21 regions that did not contain a CS are mostly corresponding to borderline

significant signals, which led to impure CS and we filtered those CS out. There are

3,870 95% CSs in total, 767 contain exactly one variant. The median size of a CS is

7, and the median purity is 0.97.

To investigate sharing of signals among blood cell traits, we further assess the

significance of each CS in different blood cell traits using lfsr (4.4.3) with threshold

0.01. Thus, we have a list of significant CSs for each trait. Figure 4.13 shows that

the majority of the CSs are shared among a subset of blood cell traits. Figure 4.14

summarizes the proportion of significant CSs are being shared for each pair of blood

cell traits. There are particularly high sharing in several cell types, e.g. platelet cells,

mature red cells, immature red cells.
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Figure 4.13: Number of traits share a CS from mvSuSiE-RSS. The histogram
shows number of traits in which the CS are significant in.

4.6.3 Comparison with single-trait fine-mapping

To compare the multivariate fine-mapping result with single-trait fine-mapping re-

sult, we applied SuSiE-RSS for each trait separately. The CSs information for each

trait are summarized in Table 4.3. Consistent with simulations, multivariate fine-

mapping provides a reduction in credible set size and a slight increment in credible

set purity, compared to single-trait fine-mapping. Furthermore, multivariate fine-

mapping finds more signals. The number of identified CSs from mvSuSiE-RSS is

much more than any of the single-trait fine-mapping results. For any trait, the mul-

tivariate fine-mapping also has more significant CSs than single-trait analysis (Figure

4.15). In single-trait fine-mapping, MSCV has fewer CSs than MCV, whereas mul-

tivariate fine-mapping produces similar number of significant CSs for MSCV and

MCV. This is because we have learned MCV shares signals with MSCV from the

data and we include the information in the prior (Figure 4.12(a)); the posterior on
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Figure 4.14: Pairwise sharing of significant CS among blood cell traits. For
each pair of blood traits, we consider the CSs that are significant (lfsr ă 0.01) in at
least one of the two blood traits, and plot the proportion of these that are shared.
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Table 4.3: Summary of single-trait fine-mapping results from SuSiE-RSS.

traits number of CSs median of CSs size median of CSs purity
WBC# 411 15 0.906
RBC# 538 11 0.926
HGB 393 12 0.918
MCV 565 8 0.948
RDW 484 9.5 0.941
PLT# 662 10 0.952
PCT 578 10 0.950
PDW 534 10 0.950
LYMPH% 378 13 0.906
MONO% 476 9 0.948
NEUT% 355 12 0.910
EO% 490 10.5 0.937
BASO% 127 8 0.947
RET% 397 9 0.932
MSCV 479 8 0.953
HLR% 409 9 0.936

effects are therefore tightly correlated. Once we are certain about the signals in

MCV, we become certain of the signals in MSCV as well, and the power to detect

signals in MSCV increases.

4.6.4 Examples

We illustrate the gains from mvSuSiE-RSS on two examples, the regions around

AK3 and GLIS3. In both regions, mvSuSiE-RSS successfully identified the validated

causal variants for some blood traits. In addition, mvSuSiE-RSS uses learned pat-

terns of sharing among traits to improve the fine-mapping resolution and the power

to detect weakly associated putative causal variants.
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Figure 4.15: Comparison of number of significant CSs in mvSuSiE-RSS vs
number of CSs in SuSiE-RSS. The traits are colored coded by cell types. The
dashed line represents y “ x.
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AK3 region

At region around AK3 gene, mvSuSiE-RSS identified 3 CSs (see Figure 4.16, 4.17

and 4.18 to visualize results). There are two putative causal variants (rs12005199,

rs409950) with strong signals in platelet cells and weak signals in red blood cells

(RBC#, RDW, MCV, MSCV) and white blood cells (WBC#, NEUT%, LYMPH%,

MONO%). The evidence for strong signals in platelet cells is consistent with previous

studies (Astle et al., 2016; Guo et al., 2017; Ulirsch et al., 2019; Vuckovic et al.,

2020). These two variants decrease PLT#, PCT, NEUT% and WBC#, but increase

LYMPH%, MONO%, MCV and MSCV. The two putative causal variants are located

close to AK3 and ECM1P1, where AK3 is involved in the pathway for megakaryocyte

development and platelet production (Gieger et al., 2011). Another CS identified in

the region contains 20 SNPs with minimum pairwise correlation 0.968. Because of

the high correlation between SNPs, it is difficult to tell them apart. These 20 SNPs

have effects in red cells (RBC#, HGB and RET%), and they are all mapped to gene

CDC37L1. CDC37L1 is a co-chaperone protein that binds to numerous proteins and

promotes their interaction with HSP90 (Scholz et al., 2001). The chaperone HSP90

helps mature the hemoglobin (Hb-β, Hb-γ) in erythroid cells (Ghosh et al., 2018).

The posterior effects for these 20 SNPs are shrunk to zero in white blood cells and

platelet cells.

From single-trait fine-mapping analysis, there are no CSs for RET%; there is

one 95% CS for HGB with 67 SNPs (Figure 4.19 left panel). In contrast, there

are two significant CSs for both RET% and HGB using mvSuSiE-RSS (Figure 4.19

right panel), because we have included the sharing of signals in red blood cells in
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Figure 4.16: Cross-trait Posterior Inclusion Probability from mvSuSiE-RSS
for AK3 region. The CSs are color coded. The CS 1 contains rs12005199 (chr9:
4763491), which is very close to rs409950 (chr9: 4763368) in CS 2. The CS 3 contains
20 SNPs with minimum pairwise correlation 0.968.
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Figure 4.17: Observed z scores for SNPs in the identified CSs for AK3
region. The locations for variants are color coded by CSs. The color of bubble
represents effect size and the size of bubble represents ´ log10pp valueq.
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Figure 4.18: Posterior effects for SNPs in the identified CSs for AK3 region.
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mvSuSiE−RSS  Haemoglobin concentration

mvSuSiE−RSS  Reticulocyte percentage
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Figure 4.19: Associations for haemoglobin and reticulocyte percentage from
original GWAS for AK3 region. The left panel shows the identified CSs using
SuSiE-RSS. The right panel shows the identified CSs using mvSuSiE-RSS.

mvSuSiE-RSS prior. Furthermore, for HGB, the CS size reduces from 67 to 20 SNPs

in multivariate fine-mapping.

This example shows that mvSuSiE-RSS improved fine-mapping resolution (i.e. reduces

CS size) and identified CSs for traits with weak signals by combining information in

related traits.

GLIS3 region

In single-trait fine-mapping, SuSiE-RSS identified the known causal variant rs6415788

associated with RBC# and HGB (Astle et al., 2016; Vuckovic et al., 2020); there

are no CSs for other blood traits. However, in multivariate fine-mapping, there are

100



two more CSs besides the CS with rs6415788 (Figure 4.20, 4.21 and 4.22). The

CS 2 and 3 provide putative causal variants for platelet and white blood cells. The

variant rs7033677 in CS 2 has been previously found evidence for association with

lymphocyte cells (Vuckovic et al., 2020). By combining information among traits, the

variant rs7033677 has shared effects among white blood cells (WBC#, LYMPH%,

NEUT%), platelet cells, MCV and MSCV.

All three CSs are around the gene GLIS3, one is significant in red blood cells,

the other two are significant in platelet and white blood cells. The discordance of

the significant traits among CSs is likely explained by the role of GLIS3. GLIS3 has

an essential role in thyroid hormone biosynthesis and thyroid gland growth (Rurale

et al., 2018). Thyroid dysfunction induces changes in both red blood cell count and

white blood cell count (Dorgalaleh et al., 2013).

This example shows that mvSuSiE-RSS is able to identify novel putative causal

variants by leveraging signals association strength across all traits.

4.7 Discussion

We have introduced an efficient multi-trait fine-mapping method that accounts for

complicated effect heterogeneity across phenotypes. Our method outperforms the

single phenotype fine-mapping methods in both power and the resolution to fine

map causal effects. Compared to the multi-trait fine-mapping method PAINTOR,

our method is magnitudes faster and more powerful. mvSuSiE and mvSuSiE-RSS

are flexible, allowing for both trait-specific and shared effects among phenotypes. It

includes the fixed effects model, which assumes equal effects in all traits, and the
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Figure 4.20: Cross-trait Posterior Inclusion Probability from mvSuSiE-RSS
for GLIS3 region. The CSs are color coded. The CS 1 contains rs6415788 (chr9:
4118111). The CS 2 contains rs7033677 (chr9: 4049942). The CS 3 contains 8 SNPs
with minimum pairwise correlation 0.903.
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Figure 4.21: Observed z scores for SNPs in the identified CSs for GLIS3
region.
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Figure 4.22: Posterior effects for SNPs in the identified CSs for GLIS3
region.
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random effects model, which allows for different effect sizes among traits (Han and

Eskin, 2011), as special cases.

One special application of mvSuSiE-RSS is the colocalization problem. Colo-

calization is aimed at determining whether two traits share a causal variant in a

genomic region. Giambartolomei et al. (2014) proposed coloc and tested colocaliza-

tion between pairs of traits under an assumption that at most one causal variant

per trait exists in the region. The single causal variant assumption is convenient but

not realistic. To allow multiple causal variants per trait, there are methods using

exhaustive search (Hormozdiari et al., 2016), deterministic approximation of poste-

riors (Wen et al., 2017) or conditioning analysis (Wallace, 2020). Recently, Wallace

(2021) combined SuSiE with coloc. They decomposed multiple signals using SuSiE

for each trait and applied multiple coloc comparisons. Using mvSuSiE-RSS, we can

parameterize the colocalization problem as a fine-mapping problem using 2 traits

with some specific priors (e.g. shared effect with different heterogeneity).

The present model focuses on fine-mapping trait measurements that are per-

formed in a single population. It would be useful to extend our method to do cross-

population fine-mapping. The distinct LD structures in each population pose a chal-

lenge in cross-population fine-mapping. The current approaches assume shared sig-

nals across all populations, and account for the heterogeneity of effect sizes between

populations using a random effects model (Kichaev and Pasaniuc, 2015; LaPierre

et al., 2020). Extending our method to do cross-population fine-mapping could fur-

ther improve the power and precision to detect sharing/population-specific effects.
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CHAPTER 5

ENHANCEMENTS FOR MASH

Multivariate adaptive shrinkage (mash) is a method to estimate and compare many

effects across multiple conditions jointly (Urbut et al., 2019). This method allows for

arbitrary correlations in effect sizes among conditions, and adapts to the patterns

present in the data set being analyzed. It provides estimates of effect sizes with

measures of uncertainty. In this chapter, we introduce two enhancements for mash.

The two enhancements are all related to the error correlations in the model.

The effects measured in different conditions could be correlated because of sample

overlap among conditions, non-removed environmental effects etc. Failing to include

the error correlations in the model increases false discoveries (Section 4.3.3). In

mash, there is a parameter to include the error correlations among effects in different

conditions. Urbut et al. (2019) estimated the parameter using a simple ad hoc

method. It is estimated as the empirical correlation matrix of the z scores for those

effects close to null. Our first enhancement is to consider an alternative way to

estimate the error correlation matrix. The estimated error correlation matrix from

the enhancement method provides a better mash fit.

The mash model is useful when there is an obvious way to define an “effect” in

each condition, e.g. effects of expression quantitative trait loci in multiple tissues.

When there is no obvious “effect” in each condition, it is common to estimate the

change in some quantity computed in multiple conditions over a common baseline

level. Such analyses are common in differential gene expression studies (Katsel et al.,

2005; McCarthy et al., 2012; Tang et al., 2015). However, comparing expressions in
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all conditions to the same baseline level induces correlations in effect errors. Urbut

(2017) extended the mash model to account for the correlation induced by com-

paring all conditions with the same control condition, the method is called mash

commonbaseline. Our second enhancement is to implement mash commonbaseline

in the mashr package https://github.com/stephenslab/mashr. We further extend

mash commonbaseline to compare all conditions with the mean over conditions.

A quick review for mash is in Section 5.1. The first enhancement is in Section

5.2. The enhancement about mash commonbaseline is in Section 5.3.

5.1 A review of the mash model

Let bjr (j “ 1, ¨ ¨ ¨ , J ; r = 1, ¨ ¨ ¨ , R) denote the true effect of gene j in condition

r. Further let b̂jr denote the observed estimate of this effect, and ŝjr denote the

standard error of this estimate. Let B̂, B and Ŝ denote the corresponding J ˆ R

matrices, and let bj , b̂j denote the j-th row of B and B̂.

The mash model assumes the genes are independent, the vector b̂j is normally

distributed about the true effects bj with variance-covariance matrix ŜjCŜj . The

true effects follow a mixture of multivariate normals. That is,

b̂j |bj , Ŝj „ NRpbj , ŜjCŜjq, (5.1.1)

bj |π,U „
K
ÿ

k“1

L
ÿ

l“1

πklNRp0, ωlUkq. (5.1.2)

Each Uk is a covariance matrix that captures a pattern of effects; each ωk is a

scaling parameter that corresponds to a different effect size; the scaling parameters
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ω1, ¨ ¨ ¨ , ωL are fixed on a dense grid; C is a full rank correlation matrix that accounts

for error correlations among the measurements in the R conditions; Ŝj is the R ˆ

R diagonal matrix with diagonal elements pŝj1, ¨ ¨ ¨ , ŝjRq. The residual correlation

matrix C is assumed known or has been estimated from the data (see Section 5.2).

The prior covariance matrices, Uk, can be any matrix that represents a potential

pattern of effects, including no effect matrix (Uk “ 0). We use a list of both

canonical and data-driven covariance matrices to capture the pattern of effects (see

Section 4.3.4).

Given B̂, Ŝ, U “ pU1, ¨ ¨ ¨ ,UKq, C, mash first estimates the unknown weights π̂

for covariance matrices by maximizing likelihood, which is a convex problem. The

posterior distribution for true effect of gene j, ppbj |b̂j , Ŝj ,U , π̂,Cq, is then computed

using Bayes’ theorem. The posterior of bj is

bj |b̂j , Ŝj ,U , π̂,C „

K
ÿ

k“1

L
ÿ

l“1

π̃jklNpµ̃jkl, Σ̃jklq, (5.1.3)

where

Σ̃jkl :“ ωlUkpI ` Ŝ
´1
j C´1Ŝ´1

j ωlUkq
´1 (5.1.4)

µ̃jkl :“ Σ̃jklŜ
´1
j C´1Ŝ´1

j b̂j (5.1.5)

π̃jkl :“
πklNRpb̂j ; 0, ŜjCŜj ` ωlUkq

ř

k1,l1 πk1l1NRpb̂j ; 0, ŜjCŜj ` ωl1Uk1q
. (5.1.6)

To measure “significance” of an effect bjr, we use the local false sign rate (lfsr),
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which is defined as

lfsrjr “ mintppbjr ě 0|b̂j , Ŝj , π̂,Uq, ppbjr ď 0|b̂j , Ŝj , π̂,Uqu. (5.1.7)

The lfsr is the probability that we would get the sign of effect incorrect if we were

to use our best guess of the sign. Therefore, a small lfsr indicates high confidence in

determining the sign of an effect.

5.2 Estimating the residual correlation matrix

Urbut et al. (2019) estimated the residual correlations C using the fact that C is

the correlation matrix of the z scores under the null (bj “ 0). The z score for effect

j in condition r is ẑjr “ b̂jr{ŝjr. The estimated C is

C “
1

|N |
ÿ

jPN
ẑj ẑ

ᵀ
j , (5.2.1)

where N “ tj : maxr |ẑjr| ă 2u.

This approach is very simple, but ad hoc. We provide an alternative way to

estimate C in mash model. We estimate C using an EM algorithm (Dempster et al.,

1977).
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The complete log-likelihood for C is

logLpC; B̂,Bq :“
J
ÿ

j“1

»

–logNRpb̂j ; bj , ŜjCŜjq ` log
K
ÿ

k“1

L
ÿ

l“1

πklNRpbj ; 0, ωlUkq

fi

fl

(5.2.2)

“

J
ÿ

j“1

´
1

2
log |C| ´

1

2
pb̂j ´ bjq

T Ŝ´1
j C´1Ŝ´1

j pb̂j ´ bjq ` constant,

(5.2.3)

where constant denotes all terms that do not depend on C.

At E-step, we set the first and second moments of bj ,

µ̃j :“ Epbj |b̂jq “
K
ÿ

k“1

L
ÿ

l“1

π̃jklµ̃jkl (5.2.4)

Epbjb
ᵀ
j |b̂jq “

K
ÿ

k“1

L
ÿ

l“1

π̃jklpΣ̃jkl ` µ̃jklµ̃
ᵀ
jklq (5.2.5)

Qj :“ Eppb̂j ´ bjqpb̂j ´ bjqᵀ|b̂jq (5.2.6)

“ b̂j b̂
ᵀ
j ´ b̂jµ̃

ᵀ
j ´ µ̃j b̂

ᵀ
j ` Epbjb

ᵀ
j |b̂jq. (5.2.7)

Taking expectations of (5.2.3), we have

E logLpC; B̂,Bq “ ´
J

2
log |C| ´

1

2

J
ÿ

j“1

tr
´

C´1Ŝ´1
j QjŜj

¯

` constant. (5.2.8)

At M-step, we update C by maximizing (5.2.8) under the constraint that the

diagonal of C must be 1, since it is a correlation matrix. However, because of the
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constraint, finding the optimal value is nontrivial. We describe two approaches below

to do M step update.

5.2.1 Exact update in M step

The constraint on C can be removed by different parameterizations (Pinheiro and

Bates, 1996). It is easier to solve an unconstrained optimization problem than con-

strained problem. We use the spherical parametrization on C, which is based on the

Cholesky decomposition, C “ LTL, where L is an upper triangular matrix. Let Li

be the ith column of L, and li be the spherical coordinates of the first i elements of

Li. We can write the spherical parameterization as

Li,1 “ li,1 cospli,2q (5.2.9)

Li,2 “ li,1 sinpli,2q cospli,3q (5.2.10)

Li,3 “ li,1 sinpli,2q sinpli,3q cospli,4q (5.2.11)

... (5.2.12)

Li,i´1 “ li,1 sinpli,2q ¨ ¨ ¨ cospli,iq (5.2.13)

Li,i “ li,1 sinpli,2q ¨ ¨ ¨ sinpli,iq, (5.2.14)

where li,j P p0, πq, i “ 2, ¨ ¨ ¨ , R, j “ 2, ¨ ¨ ¨ , i. It follows that Ci,i “ l2i,1. Because the

diagonal elements of C are one, li,1 “ 1 for all i “ 1, ¨ ¨ ¨ , R.
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To have an unconstrained parameter, we define θ P R
pR´1qR

2 as follows,

θpi´2qpi´1q{2`pj´1q “ log

˜

li,j
π ´ li,j

¸

i “ 2, ¨ ¨ ¨ , R, j “ 2, ¨ ¨ ¨ , i. (5.2.15)

Therefore, the parameter C is a function of θ. The optimization problem becomes

finding θ maximizes E logLpCpθq; B̂,Bq (5.2.8) without any constraints. We solve

the unconstrained optimization problem using numerical tools (we use the R function

optim). We then convert the estimated θ to C.

The reparametrization converts the constrained optimization problem to an un-

constrained optimization problem. Although we find the exact solution that maxi-

mizes the objective function (5.2.8), it is very slow to find a length RpR´1q{2 vector

θ that achieves the maximum. We propose another approach to do the M step.

5.2.2 Ad hoc update in M step

Because C is a correlation matrix, the diagonal of C is required to be 1. If we ignore

this constraint on C, maximizing (5.2.8) over C (the variance-covariance matrix)

is easy. We then convert the estimated variance-covariance matrix to a correlation

matrix. That is

V̂ “
1

J

»

–

J
ÿ

j“1

Ŝ´1
j QjŜ

´1
j

fi

fl (5.2.16)

Ĉ “D´1V̂ D´1 (5.2.17)

D “ diagp

b

V̂11, ¨ ¨ ¨ ,

b

V̂RRq. (5.2.18)
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We implement the EM update for C using (5.2.17) in the mashr package, because

it is simple. But the update does not guarantee to increase the objective function

(5.2.8). This is because the objective function (5.2.8) achieves maximum at V̂ , not

Ĉ. Therefore, we stop the EM algorithm before the objective function (5.2.8) drops.

5.2.3 Numerical Comparisons

We randomly generated 20 error correlation matrices. For each error correlation

matrix C, we generated effects for 4000 genes in 5 conditions,

b̂j |bj „ N5pbj ,Cq (5.2.19)

bj „
1

4
δ0 `

1

4
N5p0, e1e

ᵀ
1q `

1

4
N5p0, Iq `

1

4
N5p0,xx

ᵀ
q, (5.2.20)

where δ0 represents a point mass at 0, x “ p0, 1, 1, 0, 0qᵀ, er is the unit vector with

zeros everywhere except for element r.

We compare the mash results using oracle C and estimated C from the simple

approach (5.2.1), the exact EM updates (Section 5.2.1), the ad hoc EM updates

(5.2.17).

Likelihood

We first compare the mash log-likelihood using different C. The mash log-likelihood

is

logP pB̂|Ŝ, π̂,U , Ĉq :“
J
ÿ

j“1

log
K
ÿ

k“1

L
ÿ

l“1

π̂klNpb̂j ; 0, ŜjĈŜj ` ωlUkq. (5.2.21)
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Figure 5.1: Comparison of log-likelihood ratio using Ĉ from different meth-
ods. The likelihood ratio compares the model with the one using simple (5.2.1)
method.

Figure 5.1 compares the mash log-likelihood using Ĉ from EM updates against the

Ĉ from simple ad hoc approach (5.2.1). The likelihood ratios are positive for all

simulated data sets, so the data favors the estimated Ĉ from EM updates. The

results from exact EM updates and ad hoc EM updates are similar.

Accuracy and Power

We first evaluate the accuracy of the estimated Ĉ using Frobenius norm from the

true value, }Ĉ´C}F “
b

ř

r,r1pĈ ´Cq
2
rr1

. The estimated Ĉ from EM updates are

closer to the true value (Table 5.1).
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Table 5.1: Frobenius norm between estimated Ĉ and the true value.

method mean of Frobenius norm
simple 0.67
EM exact 0.19
EM ad hoc 0.22

Then, we evaluate the accuracy of mash estimated effects by relative root mean

squared error (RRMSE). It is defined as the RMSE of the mash estimates divided by

the RMSE achieved by simply using the original observed effects. It can be written

as

RRMSE “

g

f

f

e

1
JR

ř

j,rpbjr ´
ˆ̂
bjrq2

1
JR

ř

j,rpbjr ´ b̂jrq
2
, (5.2.22)

in which
ˆ̂
bjr is the posterior mean of true effect. The accuracy of the estimated

effects improves with the Ĉ from EM updates (Figure 5.2a).

Finally, we evaluate the power using ROC curves. The True Positive Rate (TPR)

and False Positive Rate (FPR) are computed at any given threshold t as

True Positive Rate “
|CS X S|

|T |
False Positive Rate “

|N X S|

|N |
, (5.2.23)

where S is the set of significant results at threshold t, CS is the set of correctly-signed
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Figure 5.2: Power and Accuracy with different estimated C. The left plot
compares RRMSE using different C. The right plot gives ROC curves for detecting
significant genes.

results, T is the set of true (non-zero) effects and N is the set of null effects:

S “ tj, r : lfsrjr ď tu (5.2.24)

CS “ tj, r : Epδjr|∆̂q ˆ δjr ą 0u (5.2.25)

N “ tj, r : δjr “ 0u (5.2.26)

T “ tj, r : δjr ‰ 0u. (5.2.27)

The estimated Ĉ from EM updates have higher power than the simple ad hoc

approach (Figure 5.2b).
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Table 5.2: Runtimes in seconds. The running time for the exact EM updates and
ad hoc EM updates

method mean min max
EM exact 1364.19 422.35 3087.34
EM ad hoc 96.75 20.74 210.94

Runtimes

We compare the running time for the exact EM updates and ad hoc EM updates

(Table 5.2). The ad hoc EM updates is roughly 15 times faster than the exact EM

updates.

5.2.4 Discussion

The exact EM updates and the ad hoc EM updates give similar results. Because of

the long runtimes for the exact EM updates, we implement the ad hoc EM updates

in the mashr package (function mash_estimate_corr_em).

The ad hoc EM updates needs some time to converge as well, because the mash

model is fitted at each E step. There are several things we can do to reduce the

running time. First of all, we can use a good initial value for C. We set it as the

estimated C from the simple approach (5.2.1). Moreover, we can set the number

of iterations to a small number. Because there is a large improvement in the log-

likelihood within the first few iterations, running the algorithm with small number

of iterations provides estimates of C that is better than the initial value. Finally, we

can estimate C using a random subset of b̂j , j “ 1, ¨ ¨ ¨ , J , not the whole observed

genes.
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5.3 mash commonbaseline: Comparing multiple conditions

with the same reference level

In this section, we describe the second enhancement for mash, mash commonbaseline.

Suppose we observe estimates of gene expression in R conditions, and we want to

estimate the changes in expressions in multiple conditions relative to a common

baseline level.

One method to jointly model expression deviations across all conditions is Cormotif

(Wei et al., 2015). Cormotif shares information across conditions to identify the

main patterns of deviations and assigns each gene to one of these deviations pat-

terns. However, Cormotif gives no information about deviation size and it assumes

the expression deviations are uncorrelated among conditions. It does not include the

error correlations induced by comparing with the same baseline level.

Urbut (2017) introduced mash commonbaseline to account for the correlation

induced by comparing all conditions with the same control condition. Urbut (2017)

assumed there is a common control condition in the study and introduced mash

commonbaseline to estimate changes in multiple conditions relative to the common

control condition. However, there might be no control condition in a study. To

deal with this case, we define the baseline condition as the expression mean over

different conditions. The expression deviation in any condition is then defined as

the difference in expression over the mean. We extend mash commonbaseline to

estimate deviations in multiple conditions relative to the mean.

We describe the mash commonbaseline model with a common control condition
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(Urbut, 2017) in Section 5.3.1. The mash commonbaseline model to estimate devi-

ations over the mean is described in subsection 5.3.2. Section 5.3.3 and 5.3.4 show

the improvement of the mash commonbaseline method through simulations. Section

5.3.5 discusses how to estimate deviations over the median. Section 5.3.6 shows the

improvement of the mash commonbaseline in a real application.

5.3.1 mash commonbaseline with a common control condition

For each gene j, we observe a vector of uncentered noisy mean feature expression

m̂j across R conditions,

m̂j |mj „ NRpmj , ŜjCŜjq, (5.3.1)

where mj represents the “true” means across R conditions. The “true” means mj

follows a mixture of multivariate normals which centered at an underlying mean,

µj1R. Each covariance matrix Uk represents the underlying covariance matrix from

which the “true” expression mj are thought to arise,

mj |π „ µj1R `
ÿ

k,l

πklNRp0, wlUkq. (5.3.2)

Let L denotes the R´ 1ˆR matrix of contrasts which removes expression in the

control condition from each subsequent condition. Suppose the last condition is the
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control condition, the contrast matrix takes the form:

L “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 ¨ ¨ ¨ ´1

0 1 0 ´1

...
. . .

0 0 ¨ ¨ ¨ 1 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

R´1ˆR

. (5.3.3)

Using the contrast matrix L, we obtain the expression deviations over the control

condition,

δ̂j “ Lm̂j „ NR´1pLmj ,LŜjCŜjL
ᵀ
q. (5.3.4)

The “true” deviations, δj “ Lmj , can be expressed as a zero-centered mixture of

multivariate normals,

δj |π „
ÿ

k,l

πklNR´1p0, wlU
1
kq, (5.3.5)

where U 1k “ LUkL
ᵀ represents the underlying covariance matrix from which the

“true” deviations δj are thought to arise.

Given a matrix of observed mean expression M̂ , the corresponding standard

errors Ŝ, the contrast matrix L, the prior covariance matrices U , the correlation

matrix C, we estimate mixture weights π̂ by maximum likelihood. The likelihood

for π is

Lpπq “
J
ź

j“1

ÿ

k,l

πklNR´1pδ̂j |0,LŜjCŜjL
ᵀ
` wlU

1
kq. (5.3.6)

This step adapts to patterns present in the data. If most deviations are zero, this

step puts most weight on zero effect matrix. If some prior matrices in U do not
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help capture patterns in the data, they will receive little weight. With the estimated

weights π̂, we get the posterior distribution of true deviations δj , which can be used

for estimation and inference of δj .

The δ̂j and δj can be treated as the observed effects b̂j and true effects bj in

the mash model. The critical step above is the residual covariance of the observed

deviations. Even if the original residual covariance matrix (ŜjCŜj) is diagonal, and

thus the observed noisy mean expression measurements in each condition are inde-

pendent, LŜjCŜjL
ᵀ is not diagonal and thus accounts for the induced correlation

in errors.

Dependence of m̂j on Ŝj

The model (5.3.1) assumes m̂j are independent of their standard errors Ŝj , and it

is referred as the “exchangeable effects” (EE) model (Wen and Stephens, 2014). We

can generalize this assumption that the expression may scale with standard error, so

that expressions with larger standard error tend to be larger,

Ŝ´αj m̂j |mj „ NRpŜ
´α
j mj , Ŝ

1´α
j CŜ1´α

j q. (5.3.7)

Setting α “ 0 yields (5.3.1). Setting α ą 0 implies that the expressions with larger

standard error tend to be larger (in absolute value). The contrast matrix L can be

applied on model (5.3.7). The posterior inference is for changes in the scaled quantity

(by the standard error) in multiple conditions over a common control condition.
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5.3.2 mash commonbaseline without a common control condition

In the case there is an obvious control group in the study, we estimate the deviation

over the control condition. When there is no control group in the study, we estimate

the deviation over the mean of different conditions. The contrast matrix takes the

form:

L “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

R´1
R ´ 1

R ´ 1
R ¨ ¨ ¨ ´ 1

R

´ 1
R

R´1
R ´ 1

R ´ 1
R

...
. . .

´ 1
R ´ 1

R ¨ ¨ ¨ R´1
R ´ 1

R

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

R´1ˆR

. (5.3.8)

Note that the contrast matrix L has only R ´ 1 rows. This requirement is

necessary, because the mash framework requires the correlation matrix among ob-

served deviations to be full rank. When there is a control condition, the devia-

tion for the control condition is always zero. When we compare the expression

with the mean, any deviation can be expressed using the remaining deviations, i.e.

δ̂j,i :“ m̂j,i ´
¯̂mj “ ´

řR
r“1,r‰ipm̂j,r ´

¯̂mjq “ ´
řR
r“1,r‰i δ̂j,r. Therefore, we must

discard the deviation in one condition to have a non-degenerate model.

The contrast matrix L defined in (5.3.8) discards the deviation in the last con-

dition. The deviations are m̂j,1 ´
¯̂mj , m̂j,2 ´

¯̂mj , ¨ ¨ ¨ , m̂j,R´1 ´
¯̂mj . However, the

contrast matrix L can discard any condition from m̂j,1´
¯̂mj , ¨ ¨ ¨ , m̂j,R´

¯̂mj , and the

results are similar. (For the canonical priors, the results are identical in principle;

for data-driven priors, the result depends on the way the priors are learnt.)

The posterior distribution is only for the deviations in the first R´ 1 conditions.

Using a linear transformation of the posteriors, we obtain the posterior for all R
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conditions. The linear transformation corresponding to contrast matrix (5.3.8) is

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

IR´1

´1 ¨ ¨ ¨ ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

RˆpR´1q

. (5.3.9)

Using the linear transformation, we have the posterior for all R conditions,

Aδj “

¨

˝δj,1, ¨ ¨ ¨ , δj,R´1,´
R´1
ÿ

r“1

δj,r

˛

‚. (5.3.10)

There is a drawback when we estimate the deviation over the mean. We discuss

it in detail in Section 5.3.5, and propose methods to estimate the deviation over the

median.

5.3.3 Simple Simulation with a control condition

Urbut (2017) demonstrated that failing to account for the correlations induced

by comparing with the same control condition inflates false discoveries. We con-

ducted similar simulations as in Urbut (2017) with our mash commonbaseline im-

plementation in mashr package. We compare the results from our method mash

commonbaseline with the one from mash ignoring the induced correlations, we

call this independent mash model. The independent mash model is analogous to

Cormotif, which fails to account for the induced correlations.
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In the following simulations, we treat the last condition as the control condition.

Simulation without Deviation

There is no true deviation exists in this simulation. We simulated samples with

identical mean expression in all conditions.

m̂j „ N10pmj ,
1

2
Iq, (5.3.11)

mj “ µj110. (5.3.12)

Let L be the contrast matrix as defined in (5.3.3). The mash commonbaseline uses

the following model,

δ̂j „ N9pδj ,
1

2
LLT q. (5.3.13)

However, one might subtract the expression in the control condition from every subse-

quent condition, and ignore the induced correlations, which leads to the independent

mash model,

δ̂j „ N9pδj , Iq, (5.3.14)

where the variance of δ̂jr is calculated by

Varpm̂jr´m̂jR|mjr,mjRq “ Varpm̂jr|mjrq`Varpm̂jR|mjRq “
1

2
`

1

2
“ 1 r “ 1, ¨ ¨ ¨ , R´1.

(5.3.15)

The correlation between δ̂jr and δ̂js1 , r ‰ r1, is ignored.

The mash commonbaseline model yields a much higher log-likelihood (-108173.1
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vs -115816.6 from independent mash model). Including the induced correlations,

there are no discoveries. This is expected because the true deviations, δj , are zero

for all samples. However, the independent mash model produces around 35% dis-

coveries, which are all false discoveries.

In both mash commonbaseline and independent mash, we used a list of canoni-

cal covariance matrices as priors. The mash commonbaseline method correctly puts

the majority of the mixture weights on the null matrix. In contrast, the independent

mash model puts the majority of mixture weights on the equal effect matrix. This

is caused by ignoring of correlations in errors. From this simulation, we see the

improvement of false discoveries by mash commonbaseline clearly.

Simulation with Deviation

We added signals to a number of “non-null” genes such that there are deviations

from the control group in at least one subgroup r “ 1, ¨ ¨ ¨ , R ´ 1,

m̂j |mj „ NRpmj ,
1

2
Iq, (5.3.16)

mj1...pR´1q “ mjR1R´1 ` δj . (5.3.17)

We simulated data with 10 conditions and four different types of deviations δj : null

(δj “ 0), independent among conditions, condition-specific in condition 1 (δj1 ‰ 0),

and shared (equal deviations in all sub-conditions, δj1¨¨¨9 “ 19). The data contained
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(a) Relative Root Mean Squared Error
(RRMSE)

(b) ROC curve

Figure 5.3: Power and Accuracy for different methods. The deviations are
computed over the common control group. The left plot compares RRMSE from
different models. The right plot gives ROC curves for detecting significant genes.

10% non-null deviations,

δj „
9

10
N9p0,0q `

1

30
N9p0, Iq `

1

30
N9p0, e1eT1 q `

1

30
N9p0,11T q. (5.3.18)

The mash commonbaseline outperforms the independent mash model in both

power and accuracy (Figure 5.3).

5.3.4 Simple Simulation without a control condition

In this section, we show how the methods perform when every condition is compared

to the mean of all conditions.
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Simulation without Deviation

The simulation scheme is similar to Section 5.3.3. We simulated genes with identical

mean expression in all conditions.

m̂j |mj „ NRpmj , Iq, (5.3.19)

mj “ µj1R. (5.3.20)

Let L be the contrast matrix as defined in (5.3.8), the mash commonbaseline has

the model

δ̂j |δj „ NR´1pδj ,LL
ᵀ
q. (5.3.21)

In the independent mash model, the correlation among δ̂jr and δ̂jr1 is ignored,

δ̂j |δj „ NR´1pδj ,Sq. (5.3.22)

where S is a diagonal matrix with diagonal elements

Varpm̂j,r ´
¯̂mj |mjq “

R ´ 1

R
. (5.3.23)

With R “ 10 simulated conditions, there are no discoveries from both models.

The mash commonbaseline model yields higher log-likelihood (-116342.4 vs -123179

from independent mash model). However, with R “ 3 simulated conditions, we

observe the inflation in false discoveries for independent mash. There are no false
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discoveries for mash commonbaseline, but the independent mash model produces

around 1.4% false discoveries. This is because when we compute deviations over

the mean, the error correlation between the deviations depends on the number of

conditions.

Consider a simple example that the standard error is common among different

conditions and the measurements in different conditions are independent,

Varpm̂j |mjq “ s2IR. (5.3.24)

The variance of the deviation over the mean is

Varpm̂jr ´
¯̂mj |mjq “

R ´ 1

R
s2. (5.3.25)

The covariance between two deviations is

Covpm̂jr ´
¯̂mj , m̂jr1 ´

¯̂mj |mjq “ ´
s2

R
, (5.3.26)

which depends on the number of conditions. As the number of conditions increases,

the induced error correlations become weaker and it becomes negligible.

Simulation with Deviation

We simulated data with 10 conditions, half of the samples had equal expression

among conditions. In the remaining samples, half had higher and equal expression
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in the first 2 conditions, half had higher expression in the last condition,

mj „ µj110 `
1

2
N10p0,0q `

1

4
N10p0, 9

¨

˚

˝

121
ᵀ
2 02ˆ8

08ˆ2 08ˆ8

˛

‹

‚

q `
1

4
N10p0, 9

¨

˚

˝

09ˆ9 09

0
ᵀ
9 1

˛

‹

‚

q,

(5.3.27)

m̂j |mj „ N10pmj , Iq. (5.3.28)

Let L be the contrast matrix in (5.3.8) that subtract the mean from each sample,

the deviations are

δ̂j |δj „ N9pδj ,LL
ᵀ
q. (5.3.29)

Half of the true deviations were zero, quarter of the deviations had correlation that

the first two conditions were negatively correlated with the rest conditions. For the

remaining quarter of the deviations, the first 9 conditions were negatively correlated

with the last condition.

We applied three models on the simulated data.

1. m.10: the mash commonbaseline model uses L (5.3.8) discarding the 10-th

condition.

2. m.9: the mash commonbaseline model uses L (5.3.8) discarding the 9-th con-

dition.

3. independent mash model.

To better capture the covariance structures, we fitted models with data-driven

covariance matrices.
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(a) Relative Root Mean Square Error
(RRMSE)

(b) ROC curve

Figure 5.4: Power and Accuracy for different methods. The deviations are
computed over the mean. The left plot compares RRMSE from different models.
The right plot gives ROC curves for detecting significant genes.

From Figure 5.4, the results from m.9 and m.10 have similar accuracy and

power, which confirms that mash commonbaseline is robust to the choice of the dis-

carded condition. The mash commonbaseline model performs slightly better than

independent mash. When the number of conditions is large, the difference is negli-

gible.

5.3.5 Deviation from Median

From the simulations above, it is clear that correctly modeling the inherent corre-

lations when comparing all conditions to a common control group can dramatically

reduce false positives. However, when the comparison is made with the mean, the

induced correlation becomes negligible as the number of conditions increases. The
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reason is that the quantity subtracted from each condition is a summary statis-

tic, which contains information from every condition. As the number of conditions

increases, the correlation between deviations over the summary statistics becomes

negligible.

However, there is one drawback of using the deviations over the mean. When

some conditions have large positive deviations over the mean, the other conditions

must have negative deviations. For instance, suppose the first condition has high

gene expression level, and all the other conditions have near zero expression levels.

Subtracting the mean from each condition leads to high positive deviation in the first

condition, small negative deviations in all other conditions. Therefore, all conditions

have deviations, but the deviations in the first condition have opposite sign than

others. In this case, it is more parsimonious to conclude that the first condition is

different from others. It is better to report “condition specific” effect than a shared

effect at all but one condition. To achieve this parsimonious statement, we could

estimate the change in the quantity computed in R conditions over their median.

Comparing the gene expression with the median among R conditions in the above

example, we identify that the first condition has high gene expression level compar-

ing with other conditions. Since subtracting the median would not cause the rank

deficiency problem in the correlation matrix C, we do not need to discard deviations

in any condition. However, there is no contrast matrix exists to get the deviations

over median. The variance of median in a multivariate normal distribution is hard

to compute as well. To the best of our knowledge, there is no result about the ex-

plicit variance of the median exists in literature. Therefore, we cannot use the mash
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commonbaseline model directly. There are several ways to analyze the deviation

over the median using mash.

1. Subtract median directly from each condition.

For deviations over the mean, we have observed that when the number of

conditions is large, the variance of the deviation is similar to the variance of

the observed expression (5.3.25); the covariance between deviations is negligible

(5.3.26). We assume the similar property holds for deviations over the median.

We treat median as a constant and subtract it from each condition without

considering the variance and the correlation. We then identify deviations using

mash, i.e. independent mash model.

2. Estimate deviations from posterior samples.

We first get the posterior samples of deviations over the mean, δj , using mash

commonbaseline. Then we estimate the posterior for deviation over the median

using posterior samples,

mj ´medianpmjq “ pmj ´ m̄jq ´medianpmj ´ m̄jq “ δj ´medianpδjq.

(5.3.30)

We summarize the posterior information based on the samples.

We applied the methods above on the simulated data in Section 5.3.4. When there

is no deviation in the data, the simulation scheme is same as (5.3.19) and (5.3.20).

There is no false discovery using both methods with 10 conditions. We also simulated

deviations using scheme (5.3.27), (5.3.28). Figure 5.5 shows the RRMSE and the
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(a) Relative Root Mean Square Error
(RRMSE)

(b) ROC curve

Figure 5.5: Simulation with Deviation and compare with median. (a) shows
the accuracy of the estimated deviations; (b) shows the ROC curve.

ROC curve. Both methods have RRMSE ă 1, indicating a substantial improvement

in accuracy compared with the original observed effects δ̂j . Both methods perform

similarly.

5.3.6 Application

Blischak et al. (2015) was interested in identifying genes that are differently ex-

pressed in human innate immune cells in response to infection with Mycobacterium

tuberculosis stains and related mycobacterial species. The change in gene expression

under each infection was defined relative to an uninfected control group. The ex-

pressions were measured at different post-infection timepoints. We applied our mash

commonbaseline approach to data at 18 hours post-infection.

The gene expression readings represent batch-corrected log2 counts per million
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for the 12,728 Ensemble genes, each has 6 samples across 8 infections (MTB H37Rv

(Rv), heat-inactivated MTB H37Rv (Rvplot), MTB GC1237 (GC), bacillus Calmette-

Guérin (BCG), Mycobacterium smegmatis (Smeg), Yersinia pseudotuberculosis (Yers),

Salmonella typhimurium (Salm), Staphylococcus epidermidis (Staph)) and control

(see Blischak et al., 2015, for details). There are 9 conditions in total including the

uninfected control group. To obtain the mean expression in each condition for each

gene, we used the Empirical Bayes linear model method, Limma (Smyth, 2004), to

estimate m̂j of mean gene expression and corresponding standard errors. The matrix

M̂ P RJˆR contains mean gene expression of gene j in each condition r.

The matrix of observed deviations is ∆̂ “ M̂Lᵀ, where L is defined as in (5.3.3).

We used a list of canonical and data-driven covariance matrices as prior and com-

puted posteriors for all genes.

Figure 5.6a shows the patterns identified by Cormotif in Blischak et al. (2015).

The four differential expressed patterns are collapsed into the primary patterns of

sharing in mash commonbaseline. In mash commonbaseline, the majority mixture

weight falls on the pattern that reflect broad sharing of both sign and magnitude

across infections. Yers and Salm share deviations very closely and they are strongly

correlated with one another (see Figure 5.6). We identify another pattern in mash

commonbaseline, Figure 5.6c, which is missed in Blischak et al. (2015). The pat-

tern shows strong differential expression with Smeg infection, and modest positive

correlation between deviations from Smeg and Salm infections.

We assess the quantitative similarity of deviations by sign and magnitude. Urbut

et al. (2019) defined two effects to be shared in magnitude if they have the same sign
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(a) Original Cormotif clusters
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Figure 5.6: Inferred Patterns of Sharing. The top plot (a) shows the five patterns
Cormotif identified. (Blischak et al., 2015). The plot (b) shows the most common
pattern of sharing identified in mash commonbaseline. The corresponding first three
eigenvectors are in (d), (e) and (f). The plot (c) shows another pattern we identified
in mash commonbaseline model.
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(a) Pairwise sharing by Sign
(b) Pairwise sharing by Magnitude

Figure 5.7: Plots for similarity of deviations by sign and magnitude. (a)
shows the proportion of significant genes that are “shared in sign”; (b) shows the
proportion of significant genes that are “shared in magnitude”.

and an effect within a factor of 2 of one another. Figure 5.7 shows the proportion of

differentially expressed genes with similar magnitude and sign in each pair of bacteria

infections. Sharing by magnitude is necessarily lower because it implies sharing by

sign. Almost all genes share the deviation direction among infections. We notice

that Yers and Salm share the magnitude very closely. Moreover, BCG tends to share

effects with GC, Rv and Rvplus, which is biologically reasonable given they are all

mycobacteria. These sharing patterns agree with the primary patterns from the mash

commonbaseline model and Cormotif results from Blischak et al. (2015).

Comparing with Cormotif analysis, which restricting genes to a binary pattern,

our method describes a pattern of continuous effects. A common binary configuration

identified by Cormotif is Yers-Salm, which contains roughly 13% genes. This config-

uration includes genes with strong differential expression over controls in only these
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(a) Sharing in all conditions (Yers-Salm
cluster in Cormotif)

(b) Conditions specific (Yers-Salm cluster
in Cormotif)

(c) Smeg effect (non-DE cluster in
Cormotif)

(d) No deviations (All cluster in Cormotif)

Figure 5.8: mash commonbaseline examples. mash commonbaseline uses learned
patterns of sharing to capture more subtle patterns. For each subfigure, the dots in
the left plot are raw deviations for each infection with bars indicating ˘2 se. The
dots in the right plot are mash commonbaseline posterior estimated deviations with
bars indicating ˘2 se.
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two infected conditions. In mash commonbaseline model, the identified pattern is

more subtle: it has strong deviations in Yers and Salm, and weaker but positively

correlated deviations in other infected conditions. In Figure 5.8a, we show one exam-

ple that Cormotif classified the gene (CDC14A) to Yers-Salm configuration, while

the raw data have some weak but positively correlated deviations in other infections.

Our method learns patterns from data and borrows information across conditions

in the posterior calculation, so it recognizes that the gene is differentially expressed

in all conditions with strong deviations in Yers and Salm infections. In another

example (Figure 5.8b), mash commonbaseline preserves the Yers-Salm conditions

specific pattern and shrinks other deviations to zero.

The other advantage of mash commonbaseline is it learns patterns of effects from

data and it identifies the pattern with strong Smeg effect. Therefore, we identify genes

that are strongly differentially expressed with Smeg infection and weaker correlated

deviation in Salm. Figure 5.8c shows one example. Cormotif classified this gene as

non-DE, because it fails to recognize the pattern with strong deviation in Smeg.

Lastly, our method takes into account the correlation induced by comparing all

expressions to the same control group. In contrast, Cormotif ignores the induced

correlation in the error structure, which could yield possible false discoveries. Fig-

ure 5.8d shows one example in which Cormotif assigned the gene to all differen-

tially expressed pattern while the raw deviations are small and correlated. In mash

commonbaseline, we include the induced correlation in the model, so the correspond-

ing mash commonbaseline estimates shrink all deviations to zero.
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5.3.7 Discussion

The mash commonbaseline model jointly analyzes differential expressions in mul-

tiple conditions. It takes into account the correlations induced by comparing all

conditions to a common baseline, which is commonly ignored in other methods. The

false positives reduce by including the induced correlations. It provides quantita-

tive estimation and assessment of deviations, rather than binary configurations for

pattern of sharing.

We extend the mash commonbaseline model from Urbut (2017) to compare the

quantity with the mean or median. Comparing with median could provide a more

parsimonious conclusion. We did not find an easy method to compute the variance of

median in literature. So we describe two ways to estimate the deviations over median,

1. subtract median from all conditions and use mash, 2. estimate from posteriors

of deviations over mean. These two methods perform similarly. We recommend the

first one, because it is simpler and faster than the sampling method.
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APPENDIX A

SUPPLEMENTARY FOR SUSIE-SUFF

A.1 SuSiE using sufficient statistics

We can compute the sufficient statistics either directly from column centered individual-

level ty,Xu, or derive them using the summary statistics from J simple linear re-

gressions (b̂j “ x
ᵀ
jy{x

ᵀ
jxj with standard error, ŝj), sample correlation matrix R̂s

estimated from X, variance of y (σ̂2
y “

yᵀy
N´1) and sample size N . Based on the

z score for each single SNP, ẑj “ b̂j{ŝj , the correlation coefficient R2
j for the corre-

sponding simple linear regression model is

R2
j “

ẑ2
j

ẑ2
j `N ´ 2

. (A.1.1)

Using correlation coefficient R2
j , the estimated residual variance from the simple

linear regression model is

σ̂2
j “ σ̂2

y

pN ´ 1qp1´R2
j q

N ´ 2
(A.1.2)

“ σ̂2
y

N ´ 1

ẑ2
j `N ´ 2

. (A.1.3)
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Therefore, we can compute the sufficient statistics as

XᵀX “DR̂sD, (A.1.4)

x
ᵀ
jy “

σ̂2
j

ŝj
ẑj , (A.1.5)

yᵀy “ σ̂2
ypN ´ 1q, (A.1.6)

in which D :“ diagp
b

x
ᵀ
1x1, ¨ ¨ ¨ ,

b

x
ᵀ
pxpq and x

ᵀ
jxj “

σ̂2j
ŝ2j

.
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APPENDIX B

SUPPLEMENTARY FOR SUSIE-RSS

B.1 Modifying LD matrix with z scores

Without the original individual genotype data, the only information we have about

the original samples is the observed marginal z scores. The observed z scores contain

some correlation information from the original data. In the case there are two SNPs

with the exactly same z scores, the two SNPs must be perfectly correlated in the

original genotype data. Therefore, we modify the LD matrix using information in

the observed z scores.

We treat the (centered and scaled) genotypes of each individual from the reference

panel, xref
i (the ith row of Xref), as being independent and identically distributed

draws from the “suitable” population with LD matrix R, that is

xref
i „ Np0,Rq, i “ 1, ¨ ¨ ¨nref. (B.1.1)

Under the null (z “ 0), the model for single-SNP association statistics with popula-

tion LD matrix R is

ẑ „ Np0,Rq. (B.1.2)

Since both (B.1.1) and (B.1.2) have the same correlation matrix R, we estimate R

using sample correlation with pooled data. We treat the observed z scores, ẑ, as one
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additional observation to the reference panel,

R̂1 “
1

nref ` 1

´

X
ᵀ
refXref ` ẑẑ

ᵀ
¯

(B.1.3)

“
1

nref ` 1

»

—

–

¨

˝

nref
ÿ

i“1

xref
i x

refᵀ
i

˛

‚` ẑẑᵀ

fi

ffi

fl

. (B.1.4)

We convert R̂1 to correlation matrix.

In our simulation, we observe this modification makes things worse (Figure B.1).

The possible explanation is the observed z scores are not under the null. The strong

signals in the observed z scores destroy the LD estimates.
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(a) FINEMAP with oracle maximum
number of effects

(b) FINEMAP with 4 maximum effects

(c) CAVIAR with oracle maximum num-
ber of effects

(d) SuSiE-RSS with 10 maximum effects

Figure B.1: Evaluation of posterior inclusion probabilities (PIPs) using LD
from reference panel with correction from z scores.

156



APPENDIX C

SUPPLEMENTARY FOR MVSUSIE-RSS

C.1 Details of posterior computations for the BMR model

with a mixture prior

The basic result for the BMR model is given in the main text (Proposition 4).

We consider the BMR model with an intercept and missing values in the following

subsections.

Under the BMR model, the likelihood for b is

Lpb;x,Y ,V q :“ ppY |x, b,V q (C.1.1)

“ |2πV |´N{2 exp
 

´ 1
2tr

”

V ´1pY ´ xbᵀqᵀpY ´ xbᵀq
ı

(

(C.1.2)

“ |2πV |´N{2 exp
 

´ 1
2rtrpV

´1Y ᵀY q ` pb´ b̂qᵀS´1pb´ b̂q ´ b̂ᵀS´1b̂s
(

.

(C.1.3)

The terms involving b are multivariate normal density up to a constant of propor-

tionality, Lpb;x,Y ,V q9NRpb; b̂,Sq.

C.1.1 Bayesian simple multivariate regression with an intercept

Here we extend the simple multivariate regression (4.1.10) to include an intercept.

We show that including the intercept in the model is equivalent to “centering” x and

the columns of Y so that they all have means of zero. This equivalence is achieved

in two ways: from a point estimation perspective, centering x and the columns of
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Y is equivalent to computing a maximum-likelihood estimate of the intercept; from

a Bayesian perspective, centering x and columns of Y is equivalent to integrating

out the intercept with respect to an improper, uniform prior. These results are

summarized in a proposition.

The simple multivariate regression model with intercept is

Y „ MNNˆRp1b
ᵀ
0 ` xb

ᵀ, I,V q, (C.1.4)

in which 1 :“ 1N is a vector of ones of length N , and b0 P RR is the (unknown)

intercept. The likelihood of b0, b is

Lpb0, b;x,Y ,V q :“ ppY |x, b0, b,V q

“ p2πq´NR{2|V |´N{2 exp
 

´ 1
2tr

”

V ´1pY ´ 1b
ᵀ
0 ´ xb

ᵀqᵀpY ´ 1b
ᵀ
0 ´ xb

ᵀq
ı

(

.

(C.1.5)

Proposition 6 (Simple multivariate regression with an intercept). Consider the

simple multivariate regression (C.1.4). The least-squares estimate of b0—that is, the

b0 maximizing the likelihood Lpb0, b;x,Y ,V q—and its variance-covariance matrix

S0, are

b̂0 “ ȳ ´ x̄b (C.1.6)

S0 “
1
NV , (C.1.7)

in which x̄ “ 1
Nx

ᵀ1 “ 1
N

řN
i“1 xi is the sample mean of x, and ȳ “ 1

NY
ᵀ1 is the
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vector containing the column means of Y .

The profile likelihood for b is

L˚pb;x,Y ,V q :“ max
b0

Lpb0, b;x,Y ,V q

“ Lpb; x̃, Ỹ ,V q, (C.1.8)

in which x̃ :“ x ´ x̄1 and Ỹ :“ Y ´ 1ȳᵀ are the “centered” x and Y . In other

words, the profile likelihood for simple multivariate regression with an intercept is

the same as the likelihood for multivariate regression without an intercept if we first

center x and Y . So centering x and Y is equivalent to including an intercept that

is estimated by maximum-likelihood.

Next, consider Bayesian calculations for b0 with a multivariate normal prior,

b0 „ NRp0,U0q, in which U0 is a positive semi-definite covariance matrix. The

posterior for b0 given b is

b0|b,x,Y ,V ,U ,U0 „ NRpµ1,Σ0q, (C.1.9)

where

Σ0 :“ U0pI ` S
´1
0 U0q

´1 (C.1.10)

µ0 :“ Σ0S
´1
0 b̂0. (C.1.11)
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The marginal likelihood obtained by averaging over the intercept is

L‹pb;x,Y ,V ,U0q :“
ş

Lpb0, b;x,Y ,V qppb0|U0qdb0

“ p2πq´NR{2|V |´N{2|Σ1|
1{2
|U0|

´1{2

ˆ exp
 

1
2µ

ᵀ
0Σ´1

0 µ0 ´
1
2tr

“

V ´1
pY ´ xbᵀqᵀpY ´ xbᵀq

‰(

.

(C.1.12)

In the special case of an (improper) uniform prior on b0, defined as b0 „ NRp0,U0q

with U´1
0 Ñ 0, the posterior mean reduces to the least-squares estimate, µ0 “ b̂0,

the posterior covariance becomes Σ0 “ S0, and the marginal likelihood simplifies to

L‹pb;x,Y ,V ,U0q “ p2πq
´NR{2

|V |´N{2
|S0|

1{2

|U0|
1{2

ˆ exp
 

1
2 b̂

ᵀ
0S
´1
0 b̂0 ´

1
2tr

“

V ´1
pY ´ xbᵀqᵀpY ´ xbᵀq

‰(

“
|S0|

1{2

|U0|
1{2

ˆ Lpb; x̃, Ỹ ,V q. (C.1.13)

In other words, the marginal likelihood for multivariate regression with an intercept,

when we use an improper uniform prior for the intercept, is the same—that is, up to

a constant of proportionality—as the likelihood for multivariate regression without

an intercept when we first center x and Y .

C.1.2 Bayesian simple multivariate regression with missing data

Here we extend the Bayesian computations for the simple regression model (4.1.10)

to allow for missing observations in the response, Y . The basic properties derived for
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the full-data setting are mostly preserved in the missing-data setting; for example,

the posterior distribution of b is mixture of multivariate normals when its prior is

mixture of multivariate normals. The main complication introduced by missing data

is that the least-squares estimate b̂ and its variance-covariance matrix S no longer

have the simple form given in (4.1.12) and (4.1.13).

To formulate the model in the missing data setting, we define ψi “ tψi1, . . . , ψiRu

such that ψir “ 1 if condition r in sample i is observed, and ψir “ 0 if it is missing.

We assume here that at least one condition is observed in each sample; that is,

|ψi| ě 1 for all i. Next, defining Ψi :“ diagpψi1, . . . , ψiRq, Vi :“ ΨiV Ψi and yi to

be the ith row of Y , the simple multivariate regression for sample i is written as

Ψiyi „ NRpxiΨib,Viq. (C.1.14)

By these definitions, Ψiyi is yi in which all missing values are replaced with zeros

and, similarly, the RˆR matrix Vi is obtained by filling all rows and columns of V

with zeros when the rows and columns correspond to missing values in yi. Equation

(C.1.14) defines a probability distribution in R dimensions and it has valid density

in 1 ď |ψi| ď R dimensions.

For the next expressions, we define the inverse of Vi, denoted V ´1
i , as the in-

verse of the submatrix taken from all rows and columns corresponding to observed

values, then reinserting this back to Vi. Likewise, we define the determinant of Vi,

denoted |Vi|, as the determinant of the submatrix taken from all rows and columns

corresponding to observed values.
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The likelihood for b is

Lpb;x,Y ,V ,ψ1, . . . ,ψN q :“
N
ź

i“1

ppyi|x, b,V ,ψiq

“

N
ź

i“1

p2πq´|ψi|{2|Vi|
´1{2

ˆ exp
 

´1
2

řN
i“1pyi ´ xibq

ᵀV ´1
i pyi ´ xibq

(

. (C.1.15)

The least-squares estimate of b, and its variance-covariance matrix S, are

b̂ “ S
řN
i“1 xiV

´1
i yi, (C.1.16)

S “
`
řN
i“1 x

2
iV

´1
i

˘´1
. (C.1.17)

Using these quantities, the likelihood (C.1.15) can be rewritten as

Lpb;x,Y ,V ,ψ1, . . . ,ψN q

“

N
ź

i“1

p2πq´|ψi|{2|Vi|
´1{2

ˆ expt´1
2rpb̂´ bq

ᵀS´1pb̂´ bq ´ b̂ᵀS´1b̂`
řN
i“1 y

ᵀ
i V

´1
i yisu. (C.1.18)

While this expression is not simpler than the one above, if we ignore terms that

do not involve b, the likelihood is proportional to a multivariate normal density,

Lpb;x,Y ,V ,ψ1, . . . ,ψN q9Npb; b̂,Sq.

With these results, we can now apply the Bayes factor and posterior calculations

derived in Propositions 4 to the missing data setting by making use of the formulae for

the least-squares estimate b̂ and the variance-covariance matrix S given in (C.1.16,
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C.1.17).

Note that, when all Y are observed—that is, |ψi| “ R for all i “ 1, . . . , N—then

Vi “ V for all i, and therefore all expressions here reduce to those given in Section

4.1.1.

C.1.3 Bayesian simple multivariate regression with intercept and

missing data

With missing data, we adopt a strategy to the previous section to include an inter-

cept. However, the combination of the missing data and taking care of an intercept

does introduce some extra complications, and some of the expressions derived above

cannot be reused as easily.

With the notation defined in the previous section, the simple multivariate regres-

sion model with intercept is

Ψiyi „ NRpΨipb0 ` xibq,Viq. (C.1.19)

The likelihood for b0, b is

Lpb0, b;x,Y ,V ,ψ1, . . . ,ψN q :“
N
ź

i“1

ppyi|x, b0, b,V ,ψiq

“

N
ź

i“1

p2πq´|ψi|{2|Vi|
´1{2 expt´1

2

řN
i“1pyi ´ b0 ´ xibq

ᵀV ´1
i pyi ´ b0 ´ xibqu.

(C.1.20)
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The least-squares estimate of b0, and its variance covariance matrix S0, are

b̂0 “ ȳ ´ X̄b (C.1.21)

S0 “
1

N
V̄ , (C.1.22)

in which we define

V̄ ´1 :“
1

N

N
ÿ

i“1

V ´1
i (C.1.23)

ȳ :“
1

N
V̄

N
ÿ

i“1

V ´1
i yi (C.1.24)

X̄ :“
1

N
V̄

N
ÿ

i“1

V ´1
i xi. (C.1.25)

Note that in the special case when all Y are observed, that is when V ´1
i “ V ´1

for all i “ 1, . . . , N , these definitions simplify greatly, V̄ “ V , ȳ “
řN
i“1 yi{N and

X̄ “
řN
i“1 xiIR{N , which are effectively means.

Similar to the full-data case, the profile likelihood—that is, the likelihood ob-

tained by first maximizing the likelihood with respect to the intercept—also has an

analytic form, but unlike the full-data case, we cannot reuse the likelihood for the

model without an intercept.

L‹pb;x,Y ,V ,ψ1, . . . ,ψN q :“ max
b0

Lpb0, b;x,Y ,V ,ψ1, . . . ,ψN q

“

N
ź

i“1

p2πq´|ψi|{2|Vi|
´1{2 expt´1

2

řN
i“1pỹi ´ X̃ibq

ᵀV ´1
i pỹi ´ X̃ibqu, (C.1.26)
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in which ỹi and X̃i are the “centered” yi and xi:

Ỹ :“ Y ´ 1ȳT , (C.1.27)

X̃i :“ xiIR ´ X̄. (C.1.28)

The least-squares estimate of b, and its variance-covariance matrix S, are

b̂ “ S
řN
i“1 X̃

ᵀ
i V

´1
i ỹi, (C.1.29)

S “
`
řN
i“1 X̃

ᵀ
i V

´1
i X̃i

˘´1
. (C.1.30)

(The centered quantities ỹi and X̃i are only introduced to provide intuition; in

practice, we limit computational effort in computing b̂ and S by expanding out ỹi

and X̃i in the expressions above.) Using these quantities, the profile likelihood can

be rewritten as (C.1.18), so that it is proportional to the multivariate normal density

Npb; b̂,Sq, in which b and S are given by (C.1.29) and (C.1.30), and Y is replaced

with Ỹ from (C.1.27). The Bayesian computations now follow straightforwardly

using Proposition 4, in which least-squares estimate b̂ and the variance-covariance

matrix S are given by (C.1.29) and (C.1.30).

To simplify the computation somewhat, we consider the following slight approx-
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imations:

ȳr «
řN
i“1 ψiryir{

řN
i“1 ψir, (C.1.31)

x̄rr1 «

$

’

&

’

%

řN
i“1 ψirxi{

řN
i“1 ψir if r “ r1,

0 otherwise.
(C.1.32)

This approximation will be exact—that is, (C.1.31) and (C.1.32) will recover (C.1.24)

and (C.1.25)—when either (1) all yir’s are observed, (2) V is diagonal, or (3) the

missingness patterns do not overlap, i.e., for all pairs of samples pi, i1q, eitherψi “ ψi1

or ψ
ᵀ
i ψi1 “ 0.

C.2 Details of Multivariate single-effect regression with a

mixture prior

In the presence of intercept or missing values, we define multivariate single-effect

regression similarly as (4.1.6) - (4.1.9), with the only change in the likelihood (4.1.6).

To include an intercept in the MSER model, the (4.1.6) becomes

Y „ MNNˆRp1b
ᵀ
0 `XB, IN ,V q. (C.2.1)

In the presence of missing values, the (4.1.6) becomes

Ψiyi „ NRpΨiB
ᵀxi,Viq, i “ 1, ¨ ¨ ¨ , N. (C.2.2)
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With both intercept and missing values, the (4.1.6) becomes

Ψiyi „ NRpΨipb0 `B
ᵀxiq,Viq, i “ 1, ¨ ¨ ¨ , N. (C.2.3)

The posterior inferences on γ and B are straightforward using Proposition 5

directly, in which the Bayes Factors and posterior first and second moments are from

the simple regression model as described in Section C.1.1, C.1.2 and C.1.3.
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