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DNase I sensitivity QTLs are a major determinant of
human expression variation
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The mapping of expression quantitative trait loci (eQTLs) has
emerged as an important tool for linking genetic variation to
changes in gene regulation1–5. However, it remains difficult to
identify the causal variants underlying eQTLs, and little is known
about the regulatory mechanisms by which they act. Here we show
that genetic variants that modify chromatin accessibility and tran-
scription factor binding are a major mechanism through which
genetic variation leads to gene expression differences among
humans. We used DNase I sequencing to measure chromatin
accessibility in 70 Yoruba lymphoblastoid cell lines, for which
genome-wide genotypes and estimates of gene expression levels
are also available6–8. We obtained a total of 2.7 billion uniquely
mapped DNase I-sequencing (DNase-seq) reads, which allowed
us to produce genome-wide maps of chromatin accessibility for each
individual. We identified 8,902 locations at which the DNase-seq
read depth correlated significantly with genotype at a nearby single
nucleotide polymorphism or insertion/deletion (false discovery
rate 5 10%). We call such variants ‘DNase I sensitivity quantitative
trait loci’ (dsQTLs). We found that dsQTLs are strongly enriched
within inferred transcription factor binding sites and are frequently
associated with allele-specific changes in transcription factor bind-
ing. A substantial fraction (16%) of dsQTLs are also associated with
variation in the expression levels of nearby genes (that is, these loci
are also classified as eQTLs). Conversely, we estimate that as many
as 55% of eQTL single nucleotide polymorphisms are also dsQTLs.
Our observations indicate that dsQTLs are highly abundant in the
human genome and are likely to be important contributors to
phenotypic variation.

It is now well established that eQTLs are abundant in a wide range of
cell types and in diverse organisms, and recent studies have implicated
human eQTLs as being important contributors to phenotypic vari-
ation1–5. However, the underlying regulatory mechanisms by which
eQTLs affect gene expression remain poorly understood. One mech-
anism that may be important is when the alternative alleles at a par-
ticular single nucleotide polymorphism (SNP) lead to different levels
of transcription factor binding or nucleosome occupancy at regulatory
sites; this in turn may lead to allele-specific differences in transcription
rates9–12. In this study we used DNase-seq in a panel of 70 individuals
and found that a large fraction of eQTLs are indeed probably caused by
this type of mechanism.

DNase-seq is a genome-wide extension of the classical DNase I
footprinting method13–15. This assay identifies regions of chromatin
that are accessible (or ‘sensitive’) to cleavage by the DNase I enzyme.
Such regions are referred to as DNase I-hypersensitive sites (DHSs).
DNase I sensitivity provides a precise, quantitative marker of regions
of open chromatin and is well correlated with a variety of other
markers of active regulatory regions including promoter-associated

and enhancer-associated histone marks. Furthermore, bound tran-
scription factors protect the DNA sequence within a binding site from
DNase I cleavage, often producing recognizable ‘footprints’ of
decreased DNase I sensitivity13,15–17.

We collected DNase-seq data for 70 HapMap Yoruba lymphoblastoid
cell lines for which gene expression data and genome-wide genotypes
were already available6–8. We obtained an average of 39 million uniquely
mapped DNase-seq reads per sample, providing individual maps of
chromatin accessibility for each cell line (see Supplementary Informa-
tion for all analysis details). Our data allowed us to characterize the
distribution of DNase I cuts within individual hypersensitive sites at
extremely high resolution. As expected, the DHSs coincided to a great
extent with previously annotated regulatory regions, and DNase I
sensitivity was positively correlated with the expression levels of nearby
genes (Supplementary Figs 6 and 7). Overall, the locations of hyper-
sensitive sites were highly correlated across individuals (Supplementary
Information)11.

We tested for genetic variants that affect local chromatin accessibility.
To do this, we divided the genome into non-overlapping 100-base-pair
(bp) windows, and then focused our analysis on the 5% of windows with
the highest DNase I sensitivity (see Supplementary Information). For
each individual we treated the number of DNase-seq reads in a given
window, divided by the total number of mapped reads, as a quantitative
trait that estimated the level of chromatin accessibility. We then tested
for association between individual-specific DNase I sensitivity in each
window and genotypes of all SNPs and insertions/deletions (indels) in a
cis-candidate region of 40 kilobases (kb) centred on the target window.

Using this procedure, we identified associations between genotypes
and inter-individual variation in DNase-seq read depth in 9,595
windows at a false discovery rate (FDR) of 10% (corresponding to
8,902 distinct DHSs, once we combined adjacent windows whose
hypersensitivity data were associated with the same SNP or indel;
Fig. 1a). We refer to these 8,902 loci as ‘DNase I sensitivity QTLs’, or
dsQTLs, and show an example in Fig. 1c–f. We additionally considered
a much smaller cis-candidate region of only 2 kb around each target
window and found that most of the dsQTLs were detected within this
smaller region (7,088 associated windows in 6,070 DHSs), suggesting
that most dsQTLs lie close to the target DHS. In contrast, we found
only weak evidence of trans-acting dsQTLs, probably because our
experiment was underpowered for detecting these (Supplementary
Information). For dsQTLs with enough DNase-seq reads overlapping
the most significant SNP (n 5 892), we confirmed that the fraction of
reads carrying each allele in heterozygotes was well correlated with the
dsQTL effect sizes (correlation coefficient r 5 0.72, P= 10216;
Fig. 1b).

We observed that dsQTLs typically affected chromatin accessibility
for about 200–300 bp (Fig. 2a). Of the DHSs affected by dsQTLs, 77%
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lie in chromatin regions previously predicted18 to be functional in
lymphoblastoid cell lines: 41% in predicted enhancers, 26% in promoters,
and 10% in insulators, even though those chromatin states together cover
only 6.7% of the genome overall (and 38% of our hypersensitive sites).

We next studied the properties of cis-acting variants that generated
dsQTLs, with the use of a Bayesian hierarchical model that accounted
for the uncertainty about which sites are causal19 (Supplementary
Information). This model obtained unbiased estimates of the average
properties of causal sites even though, because of linkage disequilibrium,
it was typically uncertain which site was causal for any individual dsQTL
(Supplementary Information). As shown in Fig. 2b, c, most dsQTLs
were generated by variants close to the target window. We estimate that
56% of the dsQTLs were due to variants that lay within the same DHSs
and that 67% lay within 1 kb of the target window. dsQTLs that lay more
than 1 kb from the target window were themselves significantly
enriched in non-adjacent DHS windows (2.4-fold compared with
matched random SNPs) and were often associated with changes in
sensitivity in multiple non-adjacent DHS windows (Supplementary
Fig. 15).

One intuitive mechanism for dsQTLs is that these may be caused by
variants that strengthen or weaken individual transcription factor
binding sites, thereby changing transcription factor affinity and local
nucleosome occupancy20–22 and hence DNase I cut rates. Consistent
with this model, an aggregated plot of DNase I sensitivity at dsQTLs
showed a distinct drop in chromatin accessibility around putatively

causal SNPs that was reminiscent of transcription factor binding foot-
prints, especially in the genotypes associated with high sensitivity15–17.

To test the importance of disruption of transcription factor binding
sites as a mechanism underlying dsQTLs, we again turned to the
Bayesian hierarchical model. We used the union of all published foot-
print locations in lymphoblastoid cell lines16,17 and a set of footprints
that we identified from the DNase-seq data reported in this study
(Supplementary Methods). Analysis using the hierarchical model indi-
cated a 3.6-fold enrichment of dsQTLs within transcription factor
binding footprints (P= 10216), controlling for the overall enrichment
within DHSs. In addition, the allele associated with a higher score of
the position weight matrix is typically associated with higher
chromatin accessibility (P= 10216), which is consistent with the
expectation that higher transcription factor binding affinity leads to
more open chromatin (Fig. 2d). Of the dsQTLs that fell within DNase-
seq footprints tied to specific transcription factor motifs (using
CENTIPEDE17), CCCTC binding factor (CTCF), cAMP-response ele-
ment (CRE) and interferon-stimulated response element (ISRE) were
the most enriched, whereas MADS box transcription enhancer factor 2
(MEF2) was significantly depleted.

To further understand the functional consequences of dsQTLs, we
examined ChIP-seq data for nine transcription factors collected by the
ENCODE Project in one or more lymphoblastoid cell lines10,23.
Overall, the alleles that were associated with increased DNase I
sensitivity were highly associated with increased transcription factor
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Figure 1 | Genome-wide identification of dsQTLs and a typical example.
a, Q–Q plots for all tests of association between DNase I cut rates in 100-bp
windows, and variants within 2-kb (green) and 40-kb (black) regions centred
on the target DHS windows. b, Allele-specific analysis of dsQTLs in
heterozygotes. Plotted are the predicted (x axis) and observed (y axis) fractions
of reads carrying the major allele based on the genotype means. c, Example of a

dsQTL (rs4953223). The black line indicates the position of the associated SNP.
d, Box plot showing that rs4953223 is strongly associated with local chromatin
accessibility (P 5 3 3 10213). e, The T allele, which is associated with low
DNase I sensitivity, disrupts the binding motif of a previously identified NF-
kB-binding site at this location14. f, NF-kB ChIP-seq data from ten individuals7

indicates a strong effect of this SNP on NF-kB binding.
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binding (P , 10216; Fig. 2e), indicating that dsQTLs are strong pre-
dictors of changes in occupancy by a range of DNA-binding proteins.

Given that dsQTLs produce sequence-specific changes in chro-
matin accessibility and, frequently, changes in transcription factor
binding, we speculated that a fraction of the dsQTL variants might
also affect expression levels of nearby genes. We examined this by
testing for associations between the most significant variant at each
of the dsQTLs detected by using the 2 kb window size and expression

levels of nearby genes (that is, genes with transcription start sites
(TSSs) within 100 kb) estimated by sequencing RNA from the same
cell lines8. Using this approach, we found that 16% of dsQTL SNPs
were also significantly associated with variation in expression levels of
at least one nearby gene (FDR 5 10%). This represents a huge enrich-
ment over random expectation (450-fold, P= 10216; Fig. 3). One
example of a joint dsQTL–eQTL is illustrated in Fig. 3a, in which a
SNP disrupts an ISRE located in the first intron of the SLFN5 gene,
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observed fraction in ChIP-seq data. The lines show the regression fits for each
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leading to both a strong dsQTL and an eQTL for SLFN5. Conversely,
out of 1,271 eQTLs detected by using RNA-seq data from these cell
lines8, 23% of the most significant SNPs were also dsQTLs
(FDR 5 10%). Using the method in ref. 24 for estimating the propor-
tion of tests in which the null hypothesis is false (while accounting for
incomplete power), we estimate that 55% of the most significant eQTL
SNPs are also dsQTLs and that 39% of the dsQTLs are also eQTLs.
dsQTLs are therefore a major mechanism by which genetic variation
may affect gene expression levels.

We observed that for most (70%) of the joint dsQTL–eQTLs, the
allele that was associated with increased chromatin accessibility was
also associated with increased gene expression levels (Fig. 3b). Because
higher DNase I sensitivity generally correlates with higher transcrip-
tion factor occupancy, this suggests that transcription factors that are
bound to DHSs usually act as enhancers. CRE-box and ETS-box were
the most enriched motifs among repressors and enhancers, respec-
tively. The dsQTLs that were also eQTLs (FDR 5 10%) were highly
enriched around the TSSs of the target genes: for 23% of the joint
dsQTL–eQTLs, the associated DHS was within 1 kb of the TSS, and
for 39% it was within 10 kb (Fig. 4a). This is consistent with previous
work showing strong clustering of eQTLs around TSSs19,25,26.
Nonetheless, there was a significant signal of long-range regulation
as far as 100 kb. In addition, 14% of the joint dsQTL–eQTLs were
significant eQTLs for two or more genes, suggesting that some regu-
latory regions affect more than one gene.

We sought to identify additional factors that might influence
whether a dsQTL regulates gene expression of nearby genes, while
controlling for the very strong effect of distance from TSS (Fig. 4b).
We observed that a dsQTL was more likely to be an eQTL for the gene
with the nearest TSS (1.6-fold, P 5 3 3 1024) and was more likely to
be an eQTL if it was located within the transcribed region of the gene
(2.7-fold, P 5 2 3 1029). Further, a dsQTL was 2.6-fold more likely to
be an eQTL if it was associated with a DHS that overlapped a DNA
methylation QTL27 (P 5 4 3 1024), and showed a 2.4-fold increase if
the associated DHS overlapped a RNA polymerase II ChIP-seq peak10

(P 5 4 3 1024). Conversely, a dsQTL was significantly less likely to be
an eQTL for a gene if an active binding site for the insulator protein
CTCF17 lay between the dsQTL and the gene’s TSS (2.4-fold decrease,
P 5 10212). Finally, the presence of the enhancer mark P300 (from
ENCODE ChIP-seq data28) in the dsQTL window increased the
probability that a distal dsQTL (TSS . 1.5 kb) was an eQTL (1.7-fold,
P 5 1025).

We have shown here that common genetic variants affect chromatin
accessibility at thousands of hypersensitive regions across the human
genome. The putative causal variants most often lie within or very
near the hypersensitive regions, and frequently act by changing the
binding affinity of transcription factors. Mapping of dsQTLs provides
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a powerful tool for detecting potentially functional changes in a variety
of different types of regulatory element, and roughly 50% of eQTLs are
also dsQTLs. Furthermore, analysis of significantly associated SNPs
from genome-wide association studies additionally implicates some of
these dsQTLs as potentially underlying a variety of genome-wide
association study hits (Supplementary Information). Changes in
chromatin accessibility may be a major mechanism linking genetic
variation to changes in gene regulation and, ultimately, organismal
phenotypes.

METHODS SUMMARY
DNase-seq libraries were created as described previously29, with small modifica-
tions. Each library was sequenced on at least two lanes of an Illumina GAIIx.
Resulting 20-bp sequencing reads were mapped to the human genome sequence
(hg18) using an algorithm that we designed specifically to eliminate mappability
biases between sequence variants. We divided the genome into 100-bp windows
and selected the top 5% in terms of total DNase I sensitivity. DNase I sensitivity for
each individual in each window was normalized by the total number of mapped
reads for that individual. For QTL mapping, the data were further rescaled within
and across individuals, and we adjusted the data for an observed individual 3 GC
interaction, as well as for the top four principal components of the DNase I
sensitivity matrix. Genotypes for all available SNPs and indels were obtained from
HapMap and 1,000 Genomes data and imputed where necessary6,7,30. We per-
formed DNase-seq association mapping by regressing the adjusted sensitivity in
each window against the genotypes at variants in a 40-kb region centred on each
DHS. As validation, we used our DNase-seq reads as well as ChIP-seq reads and
DNase-seq reads from ENCODE to confirm that allele-specific reads spanning
heterozygous sites at dsQTLs were consistent with the association analysis. We
also used RNA-seq data from the same cell lines8 to study the links between
dsQTLs and eQTLs. Finally, we explored the properties of dsQTLs that made
them more or less likely to influence gene expression by fitting a logistic model
on all dsQTLs, where the eQTL status of each dsQTL–eQTL test was modelled as a
function of distance from the TSS and a variety of other annotations. For full
details of all methods see Supplementary Information.
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