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Nearly 30 years ago, Cavalli-Sforza et al. pioneered the use of
principal component analysis (PCA) in population genetics and
used PCA to produce maps summarizing human genetic
variation across continental regions1. They interpreted gradient
and wave patterns in these maps as signatures of specific
migration events1–3. These interpretations have been
controversial4–7, but influential8, and the use of PCA has
become widespread in analysis of population genetics data9–13.
However, the behavior of PCA for genetic data showing
continuous spatial variation, such as might exist within human
continental groups, has been less well characterized. Here, we
find that gradients and waves observed in Cavalli-Sforza et al.’s
maps resemble sinusoidal mathematical artifacts that arise
generally when PCA is applied to spatial data, implying that
the patterns do not necessarily reflect specific migration
events. Our findings aid interpretation of PCA results and
suggest how PCA can help correct for continuous population
structure in association studies.

Cavalli-Sforza et al.’s classic text ‘‘The History and Geography of
Human Genes’’3 synthesizes a decades-long survey of human genetic
variation. These ground-breaking datasets stimulated development of
methods that are now widely used, including application of principal
component analysis (PCA) to population genetic variation. In essence,
Cavalli-Sforza et al. collected count data for many genetic variants
(‘‘alleles’’) from population samples at many geographic locations, and
produced for each allele an allele-frequency map, a spatially inter-
polated map representing variation in allele frequency across space.
They then used PCA, a general method for summarizing high-
dimensional data, to distill the many allele-frequency maps into a
smaller number of ‘‘synthetic maps,’’ which for brevity we refer to as
PC maps. Intuitively, the first few PC maps summarize the many
allele-frequency maps, in that each allele-frequency map can be well
approximated by a linear superposition of PC maps.
Figure 1 shows PC maps for Asia, Europe and Africa from refs. 2,3.

In interpreting these maps, Cavalli-Sforza and colleagues suggest that
‘‘if there is a radiation of circular or elliptic lines from a specific area, a
[population] expansion is a possible explanation; and its place of

origin must be the center of the radiation’’ (p. 295 of ref. 3). They also
suggest centripetal population movements as an alternative explana-
tion. Examples of their explanations for the European PC maps in
Figure 1 include expansion of agriculturalists out of the Near East
(Europe PC1); migrations of Mongoloid Uralic speakers from north-
western Asia (Europe PC2); migration of the carriers of the proto-
Indo-European Kurgan culture in Europe (Europe PC3); and an
expansion from Greece (Europe PC4).

Because the basis for these interpretive guidelines is unclear, we
performed simulations to investigate whether such specific migration
events are necessary to explain the observed patterns. Specifically, we
performed PCA on data simulated under equilibrium population
genetic models without range expansions, assuming a constant homo-
geneous short-range migration process across both time and (two-
dimensional) space. The results showed highly distinctive structure.
For example, the first two PC maps show large-scale orthogonal
gradients, and the next two show ‘saddle’ and ‘mound’ patterns
(Fig. 1). The same four basic patterns occurred consistently in the
first few PC maps across multiple simulations, although not always in
the same order (Supplementary Fig. 1 online). Results for the
analogous one-dimensional habitat setting are even more structured,
resembling sinusoidal functions of increasing frequency (Fig. 2, Sup-
plementary Fig. 2 online). Thus PC maps show local peaks and
troughs even when underlying migration patterns are homogeneous
across time and space. This suggests that the local features of the PC
maps do not necessarily indicate specific localized historical migration
events. Furthermore, many PC maps obtained by Cavalli-Sforza et al.
in Asia, Europe and Africa show patterns strikingly similar to those
from our simulations (Fig. 1, Supplementary Fig. 1).

In fact, these highly structured patterns are mathematical artifacts
that arise generally when PCA is applied to spatial data in
which covariance (similarity) between locations tends to decay with
geographic distance. Such data produce highly structured covariance
matrices (see, for example, Supplementary Fig. 3 online), with special
mathematical properties. In particular, they have eigenvectors related
to sinusoidal waves of increasing frequency (for example, ref. 14). This
produces sinusoidal patterns in PC maps because PC maps are visual
representations of these eigenvectors (see Supplementary Methods
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online). To give some concrete population genetics examples,
if the similarity between two populations depends only on the
geographic distance between them, and PCA is applied to populations
that are regularly spaced within a linear, circular or two-dimensional
habitat, then the resulting covariance matrices have very particular
structures (known as Toeplitz, Circulant and Block Toeplitz with
Toeplitz Blocks, respectively; Supplementary Fig. 3b), with eigenvec-
tors that are sinusoidal functions (columns of the Discrete Cosine,
Discrete Fourier and Two-Dimensional Discrete Cosine Transform
matrices, respectively; see Supplementary Note and Supplementary
Fig. 4 online). The results apply equally when PCA is applied
to individual genotype data11 rather than population allele frequen-
cies. Indeed, they apply quite generally, and have been previously
recognized in other fields, including time-series15, ecology16 and
climatology17. Further, although the formal mathematical results
inevitably involve idealized scenarios, extensive empirical data in
multiple fields16–18 show sinusoidal patterns emerging from PCA of
spatial data.

For insight into why sinusoidal patterns emerge in PC maps, it is
perhaps not directly helpful to look to the common description of
PCA, as identifying directions of maximum variance, because these
directions are in a high-dimensional mathematical space, not geo-
graphic space. Instead, consider the property of PC maps mentioned
above: it should be possible to accurately approximate each allele-
frequency map using a linear superposition of the first few PC maps.
PC maps that contain sinusoidal functions of increasing frequency
accomplish this sensibly: low-frequency patterns in early PC maps
allow a coarse approximation that reflects allele frequency changes
across large spatial scales, whereas higher-frequency patterns in sub-
sequent PC maps allow refinement of this approximation to capture
finer-scale changes.

In some settings, particularly those invol-
ving individual genotype data, geographic
information may not be available for each
sample, making PC maps difficult to produce.
Instead PCA results are commonly visualized
by producing biplots of one PC against
another. Under uniform sampling from a
one-dimensional habitat with homogeneous
migration, this results in biplots of sinusoidal
functions of differing frequencies, producing
characteristic patterns known as Lissajous
curves19 (Fig. 2c). In particular, the biplot
of PC1 versus PC2 shows a pattern known as
the ‘‘horseshoe effect’’ (for example, see
refs. 16, 20). For the analogous two-

dimensional setting, because PC1 and PC2 are typically orthogonal
gradients, plotting PC1 versus PC2 essentially reproduces the geo-
graphic arrangement of sampled individuals (explaining PCA results
for Arabidopsis thaliana21, for example), and biplots involving later
PCs have intricate patterns analogous to Lissajous curves (Supple-
mentary Fig. 5 online).

To assess the effects of deviations from the simplistic scenarios
assumed in our initial simulations, we examined PC maps for more
complex scenarios involving heterogeneous migration processes and
irregular sampling of populations across space. Detailed features
of the PC maps were influenced by both factors. Changing the
sampling scheme or details of migration can produce a range of
continuous distortions of the idealized sinusoidal shapes. Because
quantifying this effect is difficult, we instead provide several examples
for illustration. Anisotropic migration (migration that is not equal
in all directions, Supplementary Fig. 6 online) and irregularly
spaced populations (Supplementary Fig. 7 online) both distort the
PC maps, and change their order. The direction of the gradient in the
first PC map is influenced by habitat shape (for example, in Fig. 2,
PC1 in Africa and Asia are both along the longer axis of the
continent), as has also been noted in climatological data17, and by
migration patterns (for example, under anisotropic migration in a
square habitat, the gradient in PC1 aligns with the axis of least
migration; Supplementary Fig. 6). However, sinusoidal-like patterns
consistently emerge. Even when sampling locations are highly
clustered within the continuous habitat (a common sampling
design because of logistical challenges to obtaining spatially uniform
samples in many species), the first PCs separate out the clusters as
if the sample were obtained from discrete subpopulations, and
subsequent PCs show sinusoidal patterns within clusters (Supplemen-
tary Fig. 8 online).
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Figure 1 Comparison of PC maps of ref. 3 with

theoretical and empirical predictions. The first

column shows the theoretical expected PC maps

for a class of models in which genetic similarity

decays with geographic distance (see text for

details). The second column shows PC maps for

population genetic data simulated with no range

expansions, but constant homogeneous migration

rate, in a two-dimensional habitat. The columns

marked Asia, Europe and Africa are redrawn

from the originals of ref. 3. Each map is

marked by which PC it represents. The order of

maps in each of the last three columns was

chosen to correspond with the shapes in the

first two columns.
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Although the results above all involve large datasets (many loci),
sinusoidal patterns can also emerge within smaller datasets. For
example, such patterns occur in PC1 and PC2 (Supplementary
Fig. 9 online) from only 62 amplified fragment-length polymorphism
(AFLP) markers typed in 105 individuals from the ring species
complex of greenish warblers (Phylloscopus trochiloides; see Supple-
mentary Methods22 and Supplementary Fig. 9). However, limited
data can produce less well-defined (or entirely absent) sinusoidal
patterns, particularly in higher PC maps (for example, PC3 for the
same dataset; Supplementary Fig. 9). In general, amounts of data
needed to recover sinusoidal patterns will depend on the strength of
the population structure (for example, higher migration rates reduce
population differentiation, giving less well-defined sinusoidal patterns;
Supplementary Fig. 2b).

In summary, we have shown that (i) when analyzing spatial data,
PCA produces highly structured results relating to sinusoidal functions
of increasing frequency; and (ii) insofar as PCA results depend on the
details of a particular dataset, they are affected by factors in addition to
population structure, including distribution of sampling locations and
amounts of data. Both these features limit the utility of PCA for
drawing inferences about underlying processes, a fact previously noted
in climatology (for example, ref. 17). In particular, interpreting
gradient- and wave-like patterns in PC maps as signatures of historical
migration events is problematic because such patterns arise generally
under a simple condition: that genetic similarity decays with distance.
This condition would be expected to be satisfied under a wide range of
demographic scenarios, including both equilibrium isolation-by-
distance models and nonequilibrium models involving population
expansions23. Furthermore, because Cavalli-Sforza et al. used spatial
interpolation to estimate allele frequencies, their data could satisfy this
condition even if the condition were absent in the underlying allele
frequencies5. (Use of interpolation may partly explain the similarity
between Cavalli-Sforza et al.’s PC maps and those predicted by theory,
particularly in Asia where their analysis was based on fewer samples.
That said, recent analyses of European data without interpolation12

show perpendicular gradients in PC1 and PC2.)
Regarding the Neolithic expansion into Europe (and other migra-

tion events that have been argued for using PCA), we emphasize that
this paper is not about whether or not such events have occurred; a
full consideration of this would require, in each case, a synthesis of
evidence from many diverse sources (for example, refs. 7, 24–26). The
northwest-southeast slope of the PC1 gradient in Europe suggests that
this may be the direction of greatest genetic variation in Europe
(although a careful analysis would account for the potential influence
of other factors, such as the shape of the continent). However,
if a Neolithic expansion could explain this, it is but one of various
possible explanations.

For another example of how our results aid interpretation of PCA,
consider the data from Linz et al.13, who found that PC maps from
Heliobactor pylori show patterns similar to those in Cavalli-Sforza
et al.’s human data, and who use this as part of an argument that

genetic patterns of H. pylori reflect a shared migrational history with
humans. There are good reasons to suspect that genetic variation in
H. pylori has been influenced by human migrations. However, our
results show that similar patterns in PC maps of two groups does not
necessarily imply a shared migrationary history; indeed, if each group
shows an underlying spatial covariance structure, then similar patterns
will often occur in the top few PC maps even if their histories are
independent (for example, Supplementary Fig. 1).

Despite limitations for inferring underlying processes that have
produced population structure, PCA is undoubtedly an extremely
useful tool for investigating and summarizing population structure,
and we anticipate it playing a prominent role in analyses of ongoing
studies of population genetic variation. The analyses presented here
provide a helpful context for evaluating PCA results, essentially
providing a ‘null’ expectation against which observed PCs may be
compared and contrasted. On the one hand, a close correspondence
between observed and expected PCs may suggest an underlying
continuous spatial structure. On the other hand, departures from
this null may also be useful, perhaps pointing toward a more
discrete ‘cluster-like’ population structure11 or to other important
structure in the data, such as genotyping error or regions of high
linkage disequilibrium27.

Finally, our results provide some intuitive support for the use of
PCA to address the problem of spurious associations produced by
population structure in genome-wide association studies10,28. For
simplicity, we focus on association mapping of a quantitative trait
using a population sample. In essence, the problem is that if
phenotype mean varies among subpopulations, then alleles that
have no mechanistic connection to phenotype, but differ in frequency
among subpopulations, will be ‘spuriously’ associated with pheno-
type29. Although this problem has been studied mostly in the context
of discrete subpopulations, it applies also to continuous (for example,
spatial) variation21. One solution recently suggested10 is to include the
first few PCs as covariates in a regression. In populations showing a
discrete, cluster-like structure, these PCs typically separate out the
clusters11, and so this solution corresponds to allowing for phenotype
mean to vary among subpopulations. Our work now suggests that, for
spatially continuous populations, the PCA-based approach is concep-
tually similar to modeling smooth geographical trends in phenotype
mean. For example, if PC1 and PC2 are orthogonal gradients in space,
including them in a regression essentially controls for latitude and
longitude and allows for linear trends in phenotype mean across space.

a

b

0.2

PC1 PC2 PC3 PC4

0.1

P
rin

ci
pa

l c
om

po
ne

nt

0.0
–0.1
–0.2
–0.3

20 40 60 80 100

20 40 60 80 100 20 40 60 80 100

20
Spatial position

40 60 80 100

c

–0.1 0.0 0.1 0.2

PC1

–0.2

0.1

0.0

P
C

2

P
C

3

PC2

P
C

4

PC3

–0.2 –0.1 0.0 0.1

–0.2

0.0

0.2

0.1

–0.3

–0.1

0.1

–0.2 0.0 0.1 0.2

Figure 2 Results of PCA applied to data from a one-dimensional habitat.

(a) Schematic of the one-dimensional habitat, with circles marking sampling

locations and shades of blue marking order along the line. (b) One-

dimensional PC maps (that is, plots of each PC element against the

geographic position of the corresponding sample location). (c) Biplots of

PC1 versus PC2, PC2 versus PC3, and PC3 versus PC4. Colors correspond

to those in a. In many datasets without spatially referenced samples, the

colors and the lines connecting neighboring points would not be observed;

here they are shown to aid interpretation.
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If later PCs relate to sinusoidal waves of increasing frequency, then
including them in the regression allows for more flexible spatial
trends. Controlling for smooth geographic trends in phenotype is a
recognized technique in spatial epidemiology30, so this view gives
some intuitive support for the use of PCA to control for spurious
associations in spatially structured populations. Further, PCA has
important practical advantages over the use of geographic information
on each individual directly: it can be used even when geographic
information is not available, or when geographic position does not
correlate well with genetic background (as is typical in the United
States, for example). Nonetheless, practical issues remain. For exam-
ple, it may be more robust to use nonlinear functions of the first two
PCs, rather than higher PCs, to capture nonlinear spatial trends. And,
we suggest, some attempt should be made to control for only those
PCs that are correlated with phenotype, as controlling for other PCs is
unnecessary and may reduce power.

METHODS
Simulations. For our population genetics simulations, we assumed a model of

D demes that are arranged in a regular square lattice (for two-dimensional

habitat) or a line (one-dimensional habitat). Each deme has effective popula-

tion size of 2N gametes, and, backward in time, in each generation, a

proportion, m, of gametes swap places with an equal number of gametes in

each neighboring deme (for example, for the two-dimensional simulations,

demes internal on the lattice have four neighbors; demes on the edge have three

neighbors; demes in the corners have two neighbors). We assume the popula-

tion has reached equilibrium (that is, the population has been evolving in this

way for a long time).

We applied PCA to both ‘population-based’ data (as in Cavalli-Sforza

et al.1–3) and ‘individual-based’ data (as in ref. 11). For generating popula-

tion-based datasets, we sampled n individuals from Ds of the D demes, and

simulate, for each individual, data at L independent, biallelic polymorphic loci.

Assuming independence of loci corresponds to assuming migration of alleles

rather than of whole gametes. We experimented with different spatial arrange-

ments of the Ds demes, but for the results shown here (Fig. 1 and Supple-

mentary Figs. 1, 3, 5 and 6), we used a regular square lattice of Ds ¼ 15 � 15

demes embedded in the center of a larger D ¼ 31 � 31 lattice of demes. Allele

frequencies in each deme are estimated from the n sampled individuals in that

deme, to create a Ds � L data matrix of allele frequency estimates. For the one-

dimensional simulations, we report individual-based, rather than population-

based, PCA. We sampled n diploid individuals randomly from the D demes,

and the data matrix consists of an n � L genotype matrix. See Supplementary

Methods for additional details.

Principal component analysis. To calculate principal components on our

simulated data, we use biallelic loci and include only the frequency of one of the

two alleles. In accord with Cavalli-Sforza’s method for creating PCA maps, we

do not scale the allele frequencies when conducting population-based PCA;

however, our methods differ from Cavalli-Sforza et al.’s in that we applied PCA

directly to the observed allele-frequency matrix rather than using allele

frequencies spatially interpolated on a dense grid. This avoids problems with

interpolation altering underlying spatial covariance patterns5. For individual-

based PCA, we use an approach similar to that of Patterson et al.11, in that we

scale the genotype values across individuals at each locus to have unit variance

(see Supplementary Methods). For the analysis of AFLP data from greenish

warblers, we coded each typed marker by using an indicator variable with 0 or

1 indicating the absence or presence of an AFLP band, respectively. We then

normalized each indicator variable to have mean zero and unit variance before

applying PCA (again similar to the approach of ref. 11; see Supplementary

Methods for more detail).

Note: Supplementary information is available on the Nature Genetics website.
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