
www.ajhg.org Marchini et al.: Comparison of Phasing Algorithms 437

A Comparison of Phasing Algorithms for Trios and Unrelated Individuals
Jonathan Marchini,1 David Cutler,2 Nick Patterson,3 Matthew Stephens,4 Eleazar Eskin,5
Eran Halperin,6 Shin Lin,2 Zhaohui S. Qin,7 Heather M. Munro,7 Gonçalo R. Abecasis,7
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Knowledge of haplotype phase is valuable for many analysis methods in the study of disease, population, and
evolutionary genetics. Considerable research effort has been devoted to the development of statistical and compu-
tational methods that infer haplotype phase from genotype data. Although a substantial number of such methods
have been developed, they have focused principally on inference from unrelated individuals, and comparisons
between methods have been rather limited. Here, we describe the extension of five leading algorithms for phase
inference for handling father-mother-child trios. We performed a comprehensive assessment of the methods applied
to both trios and to unrelated individuals, with a focus on genomic-scale problems, using both simulated data and
data from the HapMap project. The most accurate algorithm was PHASE (v2.1). For this method, the percentages
of genotypes whose phase was incorrectly inferred were 0.12%, 0.05%, and 0.16% for trios from simulated data,
HapMap Centre d’Etude du Polymorphisme Humain (CEPH) trios, and HapMap Yoruban trios, respectively, and
5.2% and 5.9% for unrelated individuals in simulated data and the HapMap CEPH data, respectively. The other
methods considered in this work had comparable but slightly worse error rates. The error rates for trios are similar
to the levels of genotyping error and missing data expected. We thus conclude that all the methods considered will
provide highly accurate estimates of haplotypes when applied to trio data sets. Running times differ substantially
between methods. Although it is one of the slowest methods, PHASE (v2.1) was used to infer haplotypes for the
1 million–SNP HapMap data set. Finally, we evaluated methods of estimating the value of r2 between a pair of
SNPs and concluded that all methods estimated r2 well when the estimated value was �0.8.
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The size and scale of genetic-variation data sets for both
disease and population studies have increased enormous-
ly. A large number of SNPs have been identified (current
databases show 9 million of the posited 10–13 million
common SNPs in the human genome [International Hap-
Map Consortium 2005]); genotyping technology has ad-
vanced at a dramatic pace, so that 500,000 SNP assays
can be undertaken in a single experiment; and patterns
of correlations among SNPs (linkage disequilibrium [LD])
have been catalogued in multiple populations, yielding
efficient marker panels for genomewide investigations
(see the International HapMap Project Web site). These
genetic advances coincide with recognition of the need
for large case-control samples to robustly identify genetic
variants for complex traits. As a result, genomewide as-
sociation studies are now being undertaken, and much
effort is being made to develop efficient statistical tech-
niques for analyzing the resulting data, to uncover the
location of disease genes. In addition, the advances allow
much more detailed analysis of candidate genes identi-
fied by more traditional linkage-analysis methods.

Many methods of mapping disease genes assume that

haplotypes from case and control individuals are avail-
able in the region of interest. Such approaches have been
successful in localizing many monogenic disorders (Laz-
zeroni 2001), and there is increasing evidence, of both
a practical and theoretical nature, that the use of haplo-
types can be more powerful than individual markers in
the search for more-complex traits (Puffenberger et al.
1994; Akey et al. 2001; Hugot et al. 2001; Rioux et al.
2001). Similarly, haplotypes are required for many pop-
ulation-genetics analyses, including some methods for
inferring selection (Sabeti et al. 2002), and for studying
recombination (Fearnhead and Donnelly 2001; Myers
and Griffiths 2003) and historical migration (Beerli and
Felsenstein 2001; De Iorio and Griffiths 2004).

It is possible to determine haplotypes by use of experi-
mental techniques, but such approaches are considerably
more expensive and time-consuming than modern high-
throughput genotyping. The statistical determination of
haplotype phase from genotype data is thus potentially
very valuable if the estimation can be done accurately.
This problem has received an increasing amount of atten-
tion over recent years, and several computational and
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statistical approaches have been developed in the litera-
ture (see Salem et al. [2005] for a recent literature re-
view). Existing methods include parsimony approaches
(Clark 1990; Gusfield 2000, 2001), maximum-likelihood
methods (Excoffier and Slakin 1995; Hawley and Kidd
1995; Long et al. 1995; Fallin and Schork 2000; Qin et
al. 2002), Bayesian approaches based on conjugate pri-
ors (Lin et al. 2002, 2004b; Niu et al. 2002) and on
priors from population genetics (Stephens et al. 2001;
Stephens and Donnelly 2003; Stephens and Scheet 2005),
and (im)perfect phylogeny approaches (Eskin et al. 2003;
Gusfield 2003). Up to now, no comprehensive comparison
of many of these approaches has been conducted.

The forthcoming era of genomewide studies presents
two new challenges to the endeavor of haplotype-phase
inference. First, the size of data sets that experimenters
will want to phase is about to increase dramatically, in
terms of both numbers of loci and numbers of individ-
uals. For example, we might expect data sets consisting
of 500,000 SNPs genotyped in 2,000 individuals in some
genomewide studies. Second, to date, most approaches
have focused on inferring haplotypes from samples of
unrelated individuals, but estimation of haplotypes from
samples of related individuals is likely to become im-
portant. When inferring haplotypes within families, sub-
stantially more information is available than for samples
of unrelated individuals. For example, consider the sit-
uation in which a father-mother-child trio has been geno-
typed at a given SNP locus. With no missing data, phase
can be determined precisely, unless all three individuals
are heterozygous at the locus in question. Of loci with
a minor-allele frequency of 20%, for example, just 5.1%
will be phase unknown in trios, but this rises to 32%
in unrelated individuals. With missing data, other com-
binations of genotypes can also fail to uniquely deter-
mine phase.

In this study, we describe the extension of several ex-
isting algorithms for dealing with trio data. We then de-
scribe a comprehensive evaluation of the performance
of these algorithms for both trios and unrelated individ-
uals. The evaluation uses both simulated and real data
sets of a larger size (in terms of numbers of SNPs) than
has been previously been considered. We draw the en-
couraging conclusion that all methods provide a very
good level of accuracy on trio data sets. Overall, the
PHASE (v2.1) algorithm provided the most accurate es-
timation on all the data sets considered. For this method,
the percentages of genotypes whose phase was incor-
rectly inferred were 0.12%, 0.05%, and 0.16% for trios
from simulated data, HapMap CEPH trios, and HapMap
Yoruban trios, respectively, and 5.2% and 5.9% for un-
related individuals in simulated data and the HapMap
CEPH data, respectively. The other methods considered
in this study had comparable but slightly worse error
rates. The error rates for trios are comparable to ex-

pected levels of genotyping error and missing data and
highlight the level of accuracy that the best phasing algo-
rithms can provide on a useful scale. We also observed
substantial variation in the speed of the algorithms we
considered. Although it is one of the slowest methods,
PHASE (v2.1) was used to infer haplotypes for the 1
million–SNP HapMap data set (International HapMap
Consortium 2005). In addition, the data sets used in this
comparison will be made available, to form a benchmark
set to aid the future development and assessment of
phasing algorithms. Finally, we evaluated methods of
estimating the value of between a pair of SNPs. The2r
most accurate method for estimating was to first use2r
PHASE to infer the haplotypes across the region and
then to estimate between the pair of SNPs as if the2r
haplotypes were known. All methods estimated well2r
when the estimated value was �0.8.

Material and Methods

In this section, we describe the algorithms implemented in this
study. Since most of these algorithms have been described else-
where, we give only a brief overview of each method, together
with some details concerning how each method was extended
to cope with father-mother-child trios. Following a description
of our notation and the assumptions made by each method,
there is one subsection for each new method. Individuals who
contributed to the development of the trio version of each
method are shown in parentheses as part of the subsection
title. In each subsection, expressed opinions are those of the
contributing authors of that subsection and not of the com-
bined set of authors as a group. We conclude with a concise
overview that relates the different methods according to the
assumptions they make about the most-plausible haplotype
reconstructions.

Notation and Assumptions

We consider m linked SNPs on a chromosomal region of n
trio families, where each trio consists of a mother, a father,
and one offspring. We use the following notation throughout.
Let denote all the observed genotypes, inG p (G ,…,G )1 n

which denotes the ith trio. GFi, GMi, andG p (GM ,GF ,GC )i i i i

GCii denote the observed genotype data for the father, mother,
and child, respectively, and each are vectors of length m—that
is, , with , 1, or 2 representingGF p (GF ,…,GF ) GF p 0i i1 im ik

homozygous wild-type, heterozygous, or homozygous mutant
genotypes, respectively, at SNP marker k. Similarly, let H p

denote the unobserved haplotype configura-(H ,H ,…,H )1 2 n

tions compatible with G, in which , whereH p (HM ,HF)i i i

and denote the haplo-HM p (HM ,HM ) HF p (HF ,HF )i i1 i2 i i1 i2

type pairs of the mother and father, respectively. We use the
notation to indicate that the two haplo-HF � HF p GFi1 i2 i

types are compatible with the genotype GFi. Also, we let
be a vector of unknown population haplotypeV p (v ,…,v )1 s

frequencies of the s possible haplotypes that are consistent with
the sample.

All of the following algorithms make the assumption that



www.ajhg.org Marchini et al.: Comparison of Phasing Algorithms 439

all the parents are sampled independently from the population
and that no recombination occurs in the transmission of hap-
lotypes from the parents to children.

PHASE (M.S. and J.M.)

The PHASE algorithm (Stephens et al. 2001; Stephens and
Donnelly 2003; Stephens and Scheet 2005) is a Bayesian ap-
proach to haplotype inference that uses ideas from population
genetics—in particular, coalescent-based models—to improve
accuracy of haplotype estimates for unrelated individuals sam-
pled from a population. The algorithm attempts to capture the
fact that, over short genomic regions, sampled chromosomes
tend to cluster together into groups of similar haplotypes. With
the explicit incorporation of recombination in the most recent
version of the algorithm (Stephens and Scheet 2005), this clus-
tering of haplotypes may change as one moves along a chromo-
some. The method uses a flexible model for the decay of LD
with distance that can handle both “blocklike” and “nonblock-
like” patterns of LD.

We extended the algorithm described by Stephens and Scheet
(2005) to allow for data from trios (two parents and one off-
spring). We treat the parents as a random sample from the
population and aim to estimate their haplotypes, taking into
account both the genotypes of the parents and the genotype
of the child. More specifically, we aim to sample from the
distribution (compared with samplingPr (HF,HMFGF,GM,GC)
from , as shown in the work by StephensPr (HF,HMFGF,GM)
and Scheet [2005]). To do this, we use a Markov chain–Monte
Carlo (MCMC) algorithm very similar to that of Stephens and
Scheet (2005), but, instead of updating one individual at a
time, we update pairs of parents simultaneously. Note that the
observed genotypes may include missing data at some loci, in
which case the inferred haplotype pairs will include estimates
of the unobserved alleles. When updating the parents in trio
i, this involves computing, for each possible pair of haplotype
combinations in the two par-′ ′(HF p {hf,hf };HM p {hm,hm })i i

ents, the probability

′Pr HF p {hf,hf },HM( i i

′p {hm,hm }FGF ,GM ,GC ,HF ,HM ,r ∝ a bg ,)i i i �i �i i i i

where

′a p (2 � d )p(hfFHF ,HM ,r,m)p(hf FHF ,HM ,r,m) ,′i hfhf �i �i �i �i

′b p (2 � d )p(hmFHF ,HM ,r,m)p(hm FHF ,HM ,r,m) ,′i hmhm �i �i �i �i

and

′ ′g p Pr [GCFHF p (hf,hf ),HM p (hm,hm )] ,i i i i

and where is 1 if and is 0 otherwise; and′d h p h HF′hh �i

are the sets and with and removed,HM HF HM HF HM�i i i

respectively; p is a modification of the conditional distribution
of Fearnhead and Donnelly (2001); r is an estimate of the
population-scaled recombination rate, which is allowed to vary
along the region being considered; and m is a parameter that

controls the mutation rate (see Stephens and Scheet [2005] for
more details). The probability ′Pr [GCFHF p (hf,hf ),HM pi i i

is calculated assuming no recombination from par-′(hm,hm )]
ents to offspring and is therefore trivial to compute. We also
assume no genotyping error. As a result, this probability is
typically equal to 0 for a large number of parental diplotype
configurations consistent with the parental genotypes, so the
children’s genotype data substantially reduces the number of
diplotype configurations that must be considered. As in the
work of Stephens and Scheet (2005), we use Partition Ligation
(Niu et al. 2002) to further reduce the number of diplotype
configurations considered when estimating haplotypes over
many markers. This approach is not the most efficient, but it
involved few changes to the existing algorithm.

wphase (N.P.)

The model underlying wphase was developed on the basis
of ideas proposed by Fearnhead and Donnelly (2001) that
introduced a simple approximate model for haplotypes sam-
pled from a population. The algorithm differs from the PHASE
algorithm above in three ways:

1. PHASE uses MCMC to sample configurations, whereas
wphase performs a discrete hill climb. wphase computes
a pseudolikelihood function or score for a putative hap-
lotype reconstruction, H, of the form

n

S(H) p a bg ,� i i i
ip1

where , , and are defined as in the description ofa b gi i i

PHASE above. The method attempts to maximize the
score by iteratively applying a set of “moves” that make
small changes to the reconstruction.

2. PHASE and wphase differ in the precise form of the con-
ditional distributions, p, used to calculate the factors a i

and . As explained above, PHASE uses a modificationbi

of the conditional distribution of Fearnhead and Donnelly
(2001), whereas wphase uses the conditional distributions
introduced by Li and Stephens (2003).

3. PHASE internally re-estimates a variable recombination
rate across the region, whereas wphase uses an externally
input constant recombination rate across the region. Spe-
cifically, wphase uses and .r p 0.05 v p 0.02

In our opinion, the second and third differences are more im-
portant than the first. Although use of an MCMC offers some
theoretical advantages, particularly the possibility of inference
with use of multiple imputation of haplotypes, this is rarely
used in practice (see David Clayton’s SNPHAP algorithm for
a notable exception [Clayton Web site]). If only one haplotype
reconstruction is to be used (e.g., in HapMap), then maxi-
mizing a pseudolikelihood function is likely to produce a good
solution. Testing in simulation has shown that wphase nearly
always returns a score that is as good as or better than the
value of the true haplotypes. This suggests that the quality of
the reconstruction can be improved only by refining the score,
not by altering the details of the hill climb. The difference in
the form of the conditional distributions described above may
lead to improved reconstructions (Stephens and Scheet 2005).
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In the special case of the resolution of singleton SNPs that oc-
cur in the same individual, the conditional distributions used
with PHASE will result in a more plausible solution than those
used with wphase. The effect this difference has for nonsingle-
ton SNPs remains unclear.

In addition, internally estimating a variable recombination
rate is important, and its absence is a major weakness of the
current version of wphase. True recombination rates vary
greatly across the genome (McVean et al. 2004; Myers et al.
2005) and between various simulated regions in our test set.

Initial comparisons with PHASE version 1 (Stephens et al.
2001) at the time of development showed wphase to have very
similar performance but not enough improvement to make it
important to publish quickly. Since then, wphase has hardly
improved, the main change being support for trio data, but
PHASE underwent a major revision, with significant perfor-
mance enhancements (Stephens and Donnelly 2003; Stephens
and Scheet 2005).

HAP2 (S.L., A.C., and D.C.)

Haplotype and missing data inference was performed with
HAP2, the details of which have been published elsewhere (Lin
et al. 2004b). In short, HAP2 takes a Bayesian approach to
haplotype reconstruction, set forth by Stephens et al. (2001),
of dynamically updating an individual’s haplotypes to re-
semble other haplotypes in the sample at each iteration in an
MCMC scheme. The differences between this algorithm and
the PHASE algorithm described above are as follows.

1. The conditional distributions, p, used at each iteration
to sample the reconstruction of each individual are a spe-
cial case of those used in PHASE, in which recombination
is not explicitly modeled and a parent-independent mu-
tation model is assumed. Specifically, the probability of
observing a new haplotype is given by a Hoppe urn model
(Hoppe 1987) or, equivalently, a Dirichlet, rather than
coalescent-based, prior distribution for the haplotypes.
Stephens et al. (2001) point out that the mode of the
posterior distribution of this model will be close to the
maximum-likelihood estimate sought by the expectation-
maximization (EM) algorithm.

2. Whole haplotypes are not taken into account during
the calculation of the conditional distributions. In recon-
struction of an individual’s haplotypes only, data at sites
that are ambiguous for that individual are used. This
difference results in a large increase in the speed of the
algorithm.

3. A variant-partition ligation method (Niu et al. 2002) is
used for the piecemeal reconstruction of haplotypes. We
set the boundaries of the atomistic units to coincide with
those of high-LD blocks. These regions were defined to
be contiguous sequences in which all pairwise (Le-′FD F
wontin 1988) among segregating sites are 10.8. The two-
locus haplotype frequencies needed for the calculation of
these values were estimated by the Weir-Cockerham two-
point EM algorithm (Weir 1996). In our program, LD
blocks longer than six sites were split to make atomistic
units computationally manageable. Also, orphaned seg-
regating sites that were not linked with any high-LD
blocks were absorbed into the adjacent block containing

a site with the maximum to the orphan.2r

With nuclear-family data, our program reconstructs the hap-
lotypes of parents with children’s genotypes used to constrain
the former’s haplotype space. On a more technical note, when-
ever an individual’s haplotypes cannot be reconstructed to be
equivalent to other haplotypes found in the population sample,
a parent-independent mutation model is assumed that gives
equal weight to all plausible reconstructions; this situation is
rarely encountered in practice, because of the atomistic units
used in the algorithm.

The goal of our program was to create a tool that achieves
highly accurate haplotype reconstruction but that could be
used, with reasonable execution times, on enormous data sets.
The ultimate intent was to use the haplotypes reconstructed
in this manner as alleles in disease-association studies (Lin et
al. 2004a).

HAP (E.H. and E.E.)

HAP was extended (Halperin and Eskin 2004) to allow it
to cope with genotypes typed from father-mother-child trios.
The HAP algorithm assumes that the ancestral history of the
haplotypes can be described by a perfect phylogeny tree. A
perfect phylogeny tree is a genealogical tree with no recom-
binations and no recurrent mutations. HAP considers all phase
assignments that result in a set of haplotypes that are almost
consistent with a perfect phylogeny. Each assignment, H, is then
given a score, , that is the maximum likelihood of theS(H)
solution, under the assumption that the haplotypes were ran-
domly picked from the population. More specifically,

n

S(H) p max v v v v ,� HM HM HF HFi1 i2 i1 i2
iV

where and . HAP thenHF � HF p GF HM � HM p GMi1 i2 i i1 i2 i

chooses the phase assignment with the highest score. To phase
a long region, HAP applies the perfect phylogeny model in a
sliding window to short overlapping regions. These overlap-
ping predictions are combined using a dynamic programming-
based tiling algorithm that chooses the optimal phase assign-
ment for the long region that is most consistent with the over-
lapping predictions of phase in the short regions (see Halperin
and Eskin [2004] for more details).

Within a short region, the extension of HAP to trios must
take into account the fact that the haplotypes of the children
are copies of the haplotypes of the parents. We assume there
are no recombinations or mutations between the parents and
the children in the trios. This allows us, first, to unambiguously
resolve the phase of the trios in many of the positions. For the
remaining positions, we use HAP to enumerate all possible
phase assignments. This results in a set of haplotypes that are
almost consistent with a perfect phylogeny. In that enumera-
tion, we exclude the solutions that contradict Mendelian in-
heritance within a trio. For each such solution, we give the
likelihood score, which is the probability to observe the par-
ents’ haplotypes in our sample. We pick the solution with max-
imum likelihood as a candidate solution. To further improve
the solution, we use a local search algorithm. The local search
algorithm starts from the solution given by HAP, and it re-
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peatedly changes the phase of one of the trios to a different
possible phase and checks whether the likelihood function has
increased. If it has increased, we use the new solution as the
candidate solution and repeat this procedure. If no local change
can be applied to increase the likelihood, we stop and use the
solution as a putative solution for this region. HAP has been
successfully applied to several large genomic data sets, includ-
ing a whole-genome survey of genetic variation (Hinds et al.
2005).

tripleM and PL-EM (Z.S.Q., T. Niu, and J. Liu)

The tripleM algorithm is a direct extension of the EM al-
gorithm (Dempster et al. 1977) used in maximum-likelihood
haplotype reconstruction for unrelated individuals (MacLean
and Morton 1985; Excoffier and Slakin 1995; Hawley and Kidd
1995; Long et al. 1995; Chiano and Clayton 1998; Qin et al.
2002); “PL-EM” is the name given to the version of the al-
gorithm for unrelated data.

Assuming that there is no recombination event in this chro-
mosomal region during meiosis, we write down the probability
of observing the genotype data in a single trio family:

P(GFV) ∝ � �i
HF �HF pGF HM �HM pGMi1 i2 i i1 i2 i

#v v v v I ,HF HF HM HM HF �HM pGCi1 i2 i1 i2 i i i

where is the indicator function for the event thatIHF �HM pGCi i i

and , such that .au � HF v � HM u � v p GCi i i

Assuming, further, a complete independence of the n trio
families, we have the joint probability of the data from all the
families as the product of that of individual ones. In the E step
of the ( )th iteration of the EM algorithm, we compute thet � 1
Q function as , where

s(t)Q(VFV ) p � E (n FG) log v(t)V g ggp1

n (t) (t) (t) (t)v v v v Ia b c d {g�{a ,b ,c ,d }and{a ,b }�{c ,d }pGC }i i i i i i i i i i i i iE (n FG) p .(t) �V g (t) (t) (t) (t)� � v v v v I′ ′ ′ ′ ′ ′ ′ ′ip1 a b c d {{a ,b }�{c ,d }pGC }i i i i i i i i i′ ′ ′ ′a �b pGF c �d pGMi i i i i i

In the M-step, the frequency vector is updated by maximizing
the Q function, which gives rise to

E (n FG)(t)V g(t�1)v p .g 4n

For k linked SNPs, the total number of all possible distinct
haplotypes is . The regular EM algorithm is unable to handlek2
such a large number of SNPs, and computational techniques
are required to allow this method to be applied to large regions.
Partition-ligation (Niu et al. 2002) can be applied to solve this
problem. At the beginning, the SNPs are divided into disjoint
pieces, typically no more than eight SNPs in each piece. The
above EM-based algorithm is then applied to all the trio fam-
ilies, to infer haplotype frequencies in each subset of markers.
Since phasing on these subsets of markers is performed inde-
pendent of one another, these steps can be performed in par-
allel, to speed up the process. Subsequently, adjacent pieces
are ligated using the same EM algorithm. To keep the com-

putation cost in check, only nonrare haplotypes are retained
in each EM step. Essentially, tripleM is a direct extension of
the PL-EM algorithm for haplotype reconstruction, seen in the
work of Qin et al. (2002), and this approach has been used
to construct haplotype phase for general pedigrees in the work
of Zhang et al. (2005).

Summary of Methods

The descriptions of the above algorithms indicate that there
are strong similarities among the models and assumptions they
use (see table 1 for a summary of the properties of the five
methods). We have also found it useful to consider differences
among the methods from a formal point of view, in terms of
the probability model on which they are based. We find it
useful to think of each of the models from a Bayesian point
of view, even though this may not be how all of the methods
were developed and subsequently described. Within this frame-
work, we wish to make inferences about the unknown haplo-
type reconstruction, H, and the population allele frequencies
of the haplotypes, V, conditional on a set of observed genotype
data G—that is, we wish to infer the posterior distribution

. By use of the Bayes rule, this can be written asp(V,HFG)

Pr (V,HFG) ∝ Pr (GFH)Pr (HFV)Pr (V) ,

and each method can be described in terms of the three factors
on the right side of this expression. All five of the methods
considered here use essentially the same expression for the first
two factors. The first factor, , models how consistentPr (GFH)
the haplotype configuration H is with the observed genotype
data G. So, for trio data,

n

′ ′Pr (GFH) p Pr [GCFHF p (hf,hf ),HM p (hm,hm )] ,� i i i
ip1

where is computed un-′ ′Pr [GCFHF p (hf,hf ),HM p (hm,hm )]i i i

der the assumption of no recombination between parents and
child.

The second factor models the probability distribution of the
haplotype reconstruction, H, given the population allele fre-
quencies, V. All of the methods make the assumption of ran-
dom mating in the population, to derive the following prob-
ability model:

n

Pr (HFV) p v v v v .� HM HM HF HFi1 i2 i1 i2
i

Earlier, we saw that the key idea behind the PHASE algo-
rithm is that, over short genomic regions, sampled chromo-
somes tend to cluster together into groups of similar haplo-
types. This “clustering property” is encapsulated through the
specification of a prior distribution on the population haplo-
type frequencies, V. PHASE and wphase use a prior that ap-
proximates the coalescent with recombination that puts more
weight on distributions in which clusters of similar haplotypes
tend to have nonzero frequency. Unfortunately, it is not pos-
sible to write down the form of this prior distribution directly,
since PHASE and wphase directly specify the conditional dis-



Table 1

Properties of Haplotype-Inference Algorithms Used in the Present Study

Algorithm Inference Clustering Property Recombination Model Partition Ligation Output

PHASE MCMC Approximate coalescent model Estimated variable rates Fixed chunk size Best guess/sample/estimates of uncertainty
wphase Maximum pseudo-likelihood Approximate coalescent model Fixed constant rate Fixed chunk size Best guess
HAP2 MCMC None None LD-based variable chunk size Best guess/sample/estimates of uncertainty
PL-EM/tripleM Maximum likelihood (via EM) None None Fixed chunk size Best guess
HAP Constrained maximum likelihood Perfect phylogeny constraints None Overlapping chunks Best guess

Table 2

Details of Simulated Data Sets Used in the Assessment of the Algorithms

Data Set Details

ST1 100 data sets of 30 trios simulated with constant recombination rate across the region, constant population size, and random mating. Each of the 100 data sets consisted of 1 Mb of sequence.
ST2 Same as ST1, but with the addition of a variable recombination rate across the region.
ST3 Same as ST2, except a model of demography consistent with white Americans was used.
ST4 Same as ST3, with 2% missing data (missing at random).
SU1 100 data sets of 90 unrelated individuals simulated with constant recombination rate across the region, constant population size, and random mating. Each of the 100 data sets consisted of 1

Mb of sequence.
SU2 Same as SU1, but with the addition of a variable recombination rate across the region.
SU3 Same as SU2, except a model of demography consistent with white Americans was used.
SU4 Same as SU3, with 2% missing data (missing at random).
SU-100 kb Since some studies may be concerned only with the performance of phasing algorithms on lengths of sequence shorter than 1 Mb, we simulated a set of data sets identical to set SU3, except

that the sequences were only 100 kb in length. Each of these 100-kb data sets was created by subsampling a set of 1,180 simulated haplotypes. The remaining 1,000 haplotypes were used
to estimate the “true” population haplotype frequencies. This allowed a comparison of each method’s ability to predict the haplotype frequencies in a small region of interest.

Table 3

Details of the Real Data Sets Used in the Assessment of the Algorithms

Data Set Details

RT-CEU 100 data sets consisting of 30 HapMap CEU trios across 1 Mb of sequence. For each data set, we created 30 new data sets, each with a different trio altered so that the
transmission status of the alleles in one of the parents is switched. By switching only one trio at a time to create a new data set, the majority of the genotypes are
unaltered, and a minimum amount of new missing data is introduced. In each region, the error rates for the different algorithms were calculated using only the phase
estimates in the altered trios.

RT-YRI Same as RT-CEU, except 30 HapMap YRI trios were used.
RU We used HapMap CEU sample to create artificial data sets of unrelated individuals by simply removing the children from each of the trios. Since the phase of a large number

of heterozygous genotypes will be known from the trios, we can use these phase-known sites to assess the performance of the algorithms for unrelated data. One hundred
1-Mb regions were selected at random from the CEU sample and processed in this way.
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Figure 1 The method of constructing new data sets with arti-
ficially induced ambiguous sites from real trio data. The example in
the figure consists of a father-mother-child trio at four SNPs. The
genotypes at all sites are such that the haplotypes of each individual
can be inferred exactly. A new “alternative universe” child can be
created by swapping the transmission status of the haplotypes in one
of the parents. In this example, both children inherit the “1010” hap-
lotype from the father but inherit different haplotypes from the mother;
the real child inherits the “1000” haplotype, and the new child inherits
the “0101” haplotype. When the trio consisting of the father, the
mother, and the new child is considered, we see that the transmission
status of the fourth SNP is now not known unambiguously if we
consider just the genotypes at the site. The performance of phasing
algorithms can be assessed for these data sets by their ability to re-
construct the correct phase at these sites.

tributions needed to provide inference. (This does not guar-
antee that PHASE will converge to a proper probability dis-
tribution, but it is not thought to be a problem in practice
[Stephens and Donnelly 2003].) A prior distribution that can
be written down explicitly is the Dirichlet prior on haplotype
frequencies,

s

sG( � l )j
jp1 l �1jPr (V) p v ,�s j

jp1� G(l )j
jp1

and this distribution does not encourage clustering of haplo-
types in any way. Since HAP2 does not use all of the available
data, it is not strictly correct to say that the method uses this
prior. It has been suggested that, if HAP2 did use all of the
available data, then the method would produce reconstructions
very similar to those produced by a method that attempts to
maximize the likelihood, such as the PL-EM/tripleM method.
Differences in the partition-ligation schemes used by HAP2
and PL-EM/tripleM will also contribute to differences in their
performance. A related approach, called “SNPHAP” (Clayton
Web site), is based on the same model that underlies PL-EM
but uses different computational tricks to deal with long regions.
Thus, we would expect that this method would produce very
similar results to those of PL-EM. Finally, the constraints on
haplotype reconstructions in HAP can be thought of in terms
of a prior distribution that encourages clusterings of haplo-
types, although it would be difficult to write this down explicitly.

Results

Data Sets

To provide a comprehensive comparison of the algo-
rithms, we constructed the following large sets of simu-
lated and real data sets.

Simulated data.—We simulated haplotypes, using a
coalescent model that incorporates variation in recom-
bination rates and demographic events. The parameters
of the model were chosen to match aspects of data from
a sample of white Americans. Precise details of the pa-
rameters used and how they were estimated can be found
in the work of Schaffner et al. (2005). Ascertainment of
SNPs was modeled by simulating two extra groups of
eight haplotypes. For each marker, two pairs of haplo-
types were chosen randomly from each group of eight
(independently, from marker to marker), and the marker
was considered “ascertained” if either pair was hetero-
zygous. Markers were then thinned to obtain the re-
quired 1 SNP per 5 kb density that was used throughout
the present study. The details of the simulated data sets
are given in table 2. Before the actual performance tests,
two sets of simulated data, together with the answers,
were provided to all those involved in writing and ex-
tending the algorithms described above, to facilitate al-
gorithm development.

Real data.—We also used publicly available data from

the HapMap project to compare the different algorithms.
The HapMap data consists of genotypes of 30 trios from
a population with European ancestry (denoted “CEU”),
30 trios from a population with African ancestry (de-
noted “YRI”), and 45 unrelated individuals from each
of the Japanese and Chinese populations (denoted “JPT”
and “CHB,” respectively). For both CEU and YRI sam-
ples, we randomly selected 100 1-Mb regions with ∼1
SNP per 5 kb. The form of genotype data on trios is
such that the transmission status of many alleles can be
identified unambiguously. Thus, the genotypes of other
plausible offspring can be created by switching the trans-
mission status of the alleles in the parents’ genotypes.
This process is illustrated in figure 1. A summary of the
real data sets used is given in table 3. It is worth noting
that, in total, the data sets created in this way represent
6,100 Mb of genetic data consisting of ∼1.22 million
SNPs. As such, it was not possible to apply all of the
algorithms to the real data sets because of limitations
on the computational resources available to the authors
at the time of the study.

Criteria

We used six different criteria to assess the performance
of the algorithms.
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Table 4

Error Rates for the Methods Applied to the Data Sets for Simulated
Trio and Unrelated Individuals

ERROR MEASURE AND

RECOMBINATION RATE

ERROR RATE

(%)

PHASE wphase HAP HAP2 tripleM

Switch error:
ST1 .74 .98 2.14 2.58 3.02
ST2 .22 .22 1.51 5.97 2.87
ST3 1.36 2.23 2.4 2.95 3.81
ST4 1.48 2.34 2.62 3.17 4.12
SU1 2.4 3.7 6.5 6.9 9.0
SU2 2.2 3.7 9.8 15.1 13.1
SU3 4.8 6.2 7.1 8.2 11.0
SU4 5.3 6.9 7.8 9.2 11.4
SU-100 kb 4.3 5.3 5.6 5.7 8.3

IGP:
ST1 .05 .08 .17 .23 .24
ST2 .02 .02 .11 .43 .20
ST3 .12 .20 .21 .27 .33
ST4 .12 .19 .20 .29 .34
SU1 2.5 3.5 7.9 7.1 5.8
SU2 2.4 4.3 9.5 11.0 8.0
SU3 5.1 5.8 8.5 8.6 8.2
SU4 5.2 5.8 8.4 8.7 8.0
SU-100 kb 1.5 1.8 1.9 2.0 2.3

IHP:
ST1 5.5 6.5 12.8 17.2 18.6
ST2 1.9 1.9 11.4 36.2 21.2
ST3 10.4 14.2 17.0 20.8 24.8
ST4 10.3 14.7 17.8 21.3 25.0
SU1 35.5 48.0 88.6 73.5 61.1
SU2 40.4 52.1 97.1 99.0 83.4
SU3 59.1 66.4 90.1 85.1 81.4
SU4 60.8 68.0 90.6 87.1 81.5
SU-100 kb 17.2 19.4 21.8 22.2 24.7

Missing error:
ST4 1.46 1.89 4.36 5.26 3.38
SU4 7.3 9.0 11.6 15.0 19.4

NOTE.—The results for the best-performing method in each row are
highlighted in bold italics.

Switch error.—Switch error is the percentage of pos-
sible switches in haplotype orientation, used to recover
the correct phase in an individual or trio (Lin et al.
2004b).

Incorrect genotype percentage (IGP).—We counted the
number of genotypes (ambiguous heterozygotes and miss-
ing genotypes) that had their phase incorrectly inferred
and expressed them as a percentage of the total number
of genotypes. To calculate this measure, we first aligned
the estimated haplotypes with the true haplotypes, to
minimize the number of sites at which there were phase
differences. For the trio data, this alignment is fixed by
the known transmission status of alleles at nonambi-
guous sites. For the real data sets in which the truth for
the missing data was not known, we removed such sites
from consideration in both the numerator and the de-
nominator. We believe the utility of this measure lies in
its comparison with levels of genotyping error and miss-
ing data.

Incorrect haplotype (IHP).—IHP is the percentage of
ambiguous individuals whose haplotype estimates are not
completely correct (Stephens et al. 2001). It is worth
noting that, as the length of the considered region in-
creases, all methods will find it harder to correctly infer
entire haplotypes. Thus, this measure will increase with
genetic distance and eventually reach 100%, once the
region becomes long enough.

Missing error.—Missing error is the percentage of in-
correctly inferred missing data. To calculate this mea-
sure, we first aligned the estimated haplotypes with the
true haplotypes, to minimize the number of sites at
which there were phase differences. This alignment ig-
nored the sites at which there was missing data. We then
compared the estimated and true haplotypes at the sites
of missing data and counted the number of incorrectly
imputed alleles and then expressed this as a percentage
of the total number of missing data.

distance.—For SU 100-kb data sets, we also used2x

the estimated haplotypes produced by each method
to define a vector of haplotype frequencies ,{q , … ,q }1 k

and we compared these with the population frequencies
, using the x2 difference{p , … ,p }1 k

2k (p � q )i i .�
ip1 qi

Two of the methods (PHASE and HAP) also produced
explicit estimates of the population haplotype frequen-
cies; these were also compared with the population fre-
quencies by use of the same measure.

Running time.—For each of the methods, we recorded
the running time for a subset of the simulated data sets.
Because of limitations on the amount of available com-
puting resources and the portability of some code, it was
not possible to run all the methods on the same com-

puter, so we also report some details of the computing
resources used by each of the authors.

The switch error, IGP, IHP, and missing error were
calculated by summing the number of errors or switches
across all data sets and individuals and dividing by the
total number of possible errors or switches across all data
sets and individuals. Some of the real data sets have miss-
ing data; thus, the true haplotypes are not known com-
pletely, and it is not possible to calculate the switch error,
IGP, or IHP measures. To deal with this problem, we
calculated the error measures in a given individual or
trio, using only sites for which there is no missing data.

Performance

The performance of the methods on the simulated and
real data sets are shown in tables 4–7. When interpreting
these results, it should be kept in mind that these results
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are specific to the density of SNPs and sample size of
the data sets used. Several clear patterns are evident in
these tables.

Overall, the performance of all the data sets is very
good. For the best method, we observed percentages
of genotypes that had their phase incorrectly inferred:
0.12% for trios and 5.2% for unrelated individuals on
simulated data sets, 0.05% and 5.9% on HapMap CEPH
trios and unrelated individuals, respectively, and 0.16%
on HapMap Yoruban trios (table 4). These results clearly
show the difference in error rates between the use of trio
and unrelated samples (compare ST and SU data sets in
table 4). The error rates for the trio data sets are com-
parable to expected levels of genotyping error and miss-
ing data and highlight the level of accuracy that the best-
phasing algorithms can provide on a useful scale.

For the trio data sets, the PHASE algorithm consis-
tently provided the best performance (compare methods
for ST data sets of table 4). Of the other methods, the
wphase algorithm is the next best and is followed by
HAP, HAP2, and tripleM, in that order. The only excep-
tion is that tripleM sometimes has a better performance
than HAP2 (i.e., for ST2 data set, regardless of error
measure).

For the data sets of unrelated individuals, the PHASE
algorithm consistently provided the best performance,
followed by wphase (compare methods for SU data sets
of table 4). Of the other methods, PL-EM seems to per-
form better than both HAP and HAP2 in terms of IGP
and IHP but less well in terms of switch error. This sug-
gests that the haplotypes that PL-EM infers incorrectly
require a relatively large number of switches to be made
correct.

As expected, the performance is better for trio data
sets than for unrelated individuals. Another useful sum-
mary of the performance of the algorithms that high-
lights the differences between the use of trio and unre-
lated data is the rate of switch errors per unit of physical
distance. For the real-data-set comparisons shown in ta-
ble 6, the results of the PHASE algorithm correspond to
an average of one (trio) switch error every 8 Mb and
every 3.6 Mb for the RT-CEU and RT-YRI data sets,
respectively. For the RU data sets, we observed an av-
erage of one switch error every 333 kb of sequence. As
mentioned above, these figures are relevant only to the
SNP density and sample size of the data sets analyzed.

The performance of PHASE is improved in the sce-
narios in which recombination occurs in hotspots (ST2
and SU2 in table 4), compared with the scenarios that
have constant recombination rates (ST1 and SU1 in table
4). This pattern does not hold, in general, for the other
methods.

The error rates for simulated data depend on the de-
mographic models assumed, because there is a difference
in performance of the data sets simulated using a model

of demography that is based on real data (ST3 and SU3
in table 4) and those simulated using a model that as-
sumes constant population size and random mating (ST2
and SU2 in table 4).

The error rates for the data simulated with “CEU-
like” demography are higher than real CEU data sets
(compare ST4 and SU4 data sets in table 4 with RT-
CEU and RU-CEU in table 6). It is difficult to specify
the exact reason for this, but potential explanations in-
clude differences in the amount and pattern of missing
data, differences in the levels of recombination, and dif-
ferences in the real and simulated demographic events.

There is a large variation in the running times of the
different methods (see table 7). For the simulated trio
data sets, the fastest algorithm was tripleM, at 1.5 s.
The algorithms HAP2, HAP, wphase, and PHASE took
12, 15, 4,480, and 8,840 times as long, respectively. For
simulated unrelated data sets, HAP was the fastest algo-
rithm, at 35.1 s. The algorithms HAP2, PL-EM, PHASE,
and wphase took 3.6, 7.5, 1,114, and 12,205 times as
long, respectively. Even so, PHASE was successfully ap-
plied to infer haplotypes from phase I of the HapMap
project (1 million SNPs genotyped in two sets of 30 trios
and a set of 89 unrelated individuals [International
HapMap Consortium 2005]). (See J.M.’s Web site for
online material with details of the haplotype estimation
for phase I of the HapMap project.)

Estimation of r2

In a given study, it is often of interest to consider the
pattern of (pairwise) LD across a region for which ge-
notype data has been collected. Estimates of LD are use-
ful for visualization of the LD structure in a region or
for purposes of defining a set of tagging SNPs for use
in association studies (Johnson et al. 2001; Carlson et
al. 2004). A commonly used measure is the squared cor-
relation coefficient within haplotypes; it cannot be2(r )
calculated directly from genotype data. We evaluated the
following methods of estimating between a pair of2r
SNPs within a given region.

1. First, estimate haplotypes with the algorithms con-
sidered in the present study (PHASE, wphase, HAP,
HAP2, and tripleM/PL-EM) and then estimate 2r
between each pair of SNPs, as if these were the true
haplotypes.

2. Use genotypes for pairs of markers to estimate 2r
with the EM algorithm (pairwise) (Weir 1996).

3. Use the genotype correlation (GC).

We applied these methods to the simulated trio and
unrelated data sets with (ST4 and SU4) and without
(ST3 and SU3) missing data. For each of the 100 regions
within each of these data sets, we first calculated the
mean squared error of the true and estimated , aver-2r
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Table 5

Average Distances of the True versus Estimated Population Haplotype Frequencies2x

for Each Algorithm, Applied to the 100-kb Simulated Data Sets of Unrelated Individuals

POPULATION

FREQUENCY

COMPARISON OF DISTANCES BY ALGORITHM2x

PHASE wphase HAP HAP2 PL-EM
Sample

Haplotypes

All frequencies .70 (.44) .77 .69 (.76) .67 .83 .50
Frequencies 15% .030 (.027) .034 .034 (.07) .034 .066 .028

NOTE.—The estimated haplotypes produced by each method were used to construct es-
timates of the population frequencies. In addition, HAP and PHASE provided explicit es-
timates of the population haplotype frequencies; the distances for these approaches are2x

given in parentheses. The distances were calculated by summing over all population2x

frequencies and by summing over all population frequencies 15%. The final column shows
the distance between the true population frequencies and the estimates produced by the2x

true sample haplotypes. The results for the best-performing method in each row are high-
lighted in bold italics.

Table 6

Error Rates for Methods Applied to the Real Data Sets

ERROR

MEASURE

AND SAMPLE

ERROR RATE (%) OF ALGORITHM

APPLIED TO REAL DATA SETS

PHASE wphase HAP HAP2 tripleM/PL-EM

Switch error:
RT-CEU .53 … 3.30 1.81 …
RT-YRI 2.16 … 7.34 … …
RU 5.43 … 6.92 8.21 …

IGP:
RT-CEU .05 … .28 .15 …
RT-YRI .16 … .49 … …
RU 5.84 … 7.13 7.42 …

IHP:
RT-CEU 6.20 … 20.07 17.51 …
RT-YRI 15.7 … 42.02 … …
RU 82.6 … 91.9 90.8 …

NOTE.—Data sets are based on the HapMap data. Not all methods
were run on these data sets, because of restrictions on the computa-
tional resources available to the authors. The results for the best-
performing method in each row are highlighted in bold italics. See
table 2 for description of data sets RT and RU.

aged these values across the 100 data sets, and took the
square root to give a root-mean-square-error (RMSE)
measure.

The results are given in table 8 and show that all
the methods do well at estimating . The methods that2r
estimate haplotypes do better than the methods that use
only pairs of markers or use the GC. The most accu-
rate estimates were obtained using PHASE to estimate
haplotypes.

To gain a sense of the actual difference in estimates
produced by the different methods, we chose a typical
data set from each of the trio and unrelated data sets
and plotted the true and estimated for the PHASE,2r
pairwise, and GC methods (fig. 2). The figure shows that
all methods have a tendency to produce errors on low
values of , but that high values of (10.8) are esti-2 2r r
mated well. The figure also shows that the GC method
is much less accurate than the PHASE and pairwise
methods.

Benchmarks

To date, no comprehensive comparison has been per-
formed between existing phasing algorithms. When com-
parisons have been performed, they have often involved
small data sets of limited relevance. It is our intention
that the data sets used in the present study form the basis
of a benchmark set of data made freely available for the
further development and open assessment of methods.
Instructions for obtaining these data sets can be found
at the authors’ Web site.

Discussion

Inference of haplotype phase continues to be an impor-
tant problem. With the advent of genomic-scale data
sets, the size of the inference task has grown well beyond
that on which many methods were developed and orig-
inally compared. The motivation for the present study

was the HapMap project, in the first phase of which 1
million SNPs were genotyped in two sets of 30 trios and
one set of 89 unrelated individuals. We extended some
of the best current phasing algorithms to deal with trio
data and undertook a comprehensive performance assess-
ment of the algorithms for large simulated and real data
sets.

The results of the comparison are encouraging. All
of the algorithms produce comparable error rates. The
most accurate algorithm was PHASE (v2.1). For this
method, the percentages of genotypes whose phase was
incorrectly inferred were 0.12%, 0.05%, and 0.16% for
trios from simulated data, HapMap CEPH trios, and
HapMap Yoruban trios, respectively, and 5.2% and 5.9%
for unrelated individuals in simulated data and HapMap
CEPH data, respectively.

When these results are interpreted, it is important to



www.ajhg.org Marchini et al.: Comparison of Phasing Algorithms 447

Table 7

Findings for Each Method on the ST4 and ST3 Sets of Simulated Data

ALGORITHM

MEAN RUNNING TIME

BY DATA SET

PROCESSOR DETAILSST4 SU4

wphase 1 h 52 min 119 h Intel Xeon (2.8 GHz)
HAP 22.3 s 35.1 s Intel Xeon (3.06 GHz)
HAP2 18.4 s 2 min 6 s AMD Opteron 248 (2.2 GHz)
PHASE 3 h 32 min 10 h 52 min AMD Opteron 246 (2.0 GHz)
tripleM/PL-EM 1.5 s 4 min 22 s Intel Pentium (2.4 GHz)

NOTE.—The fastest performing method in each column is highlighted in bold
italics.

Table 8

Accuracy of Estimation2r

DATA SET

AND ALGORITHM

RMSE

With Missing Data Without Missing Data

Trios:
PHASE .003 .002
wphase .004 .003
HAP .007 .004
HAP2 .007 .004
tripleM .004 .005
Pairwise .011 .009
GC .032 .030

Unrelated individuals:
PHASE .011 .011
wphase .015 .014
HAP .022 .022
HAP2 .022 .020
PL-EM .025 .029
Pairwise .019 .018
GC .025 .023

NOTE.—For each data set, we calculated the mean squared error of
the true and estimated , averaged these values across the 100 data2r
sets, and took the square root to give an RMSE. RMSE is based on
PHASE estimated haplotypes (PHASE, wphase, HAP, HAP2, tripleM/
PL-EM), pairwise EM algorithm (pairwise), and GC. Results are based
on the simulated data sets of trios with and without missing data (ST4
and ST3) and unrelated individuals with and without missing data
(SU4 and SU3).

remember that these error rates were produced on data
sets with the particular average SNP density (1 SNP per
5 kb) and number of individuals used by HapMap and
that care should be taken when trying to extrapolate
these error rates to data sets with different numbers of
individuals and different densities of SNPs. Generally
speaking, the practical experience of all the authors in-
volved in this study and previous simulation results (Ste-
phens et al. 2001) lead us to believe that error rates will
decrease with increased SNP density and increased sam-
ple sizes. We also have no evidence to suggest that the
relative performance of the methods will change. For the
data sets considered in the present study, the error rates
for the trio data sets are comparable to expected levels
of genotyping error and missing data and highlight the
level of accuracy that the best phasing algorithms can
provide on a useful scale.

The models underlying the methods studied here in-
volve various assumptions. These assumptions will in-
variably be false for real data sets, and it is of interest
to assess the extent to which performance changes with
departures from these assumptions. For example, all the
methods explicitly assume that parents of the trio data
sets or the individuals in the unrelated data sets were
sampled independent of the population. This may not
be true in disease studies in which the trios may have
been chosen because the child is affected or when a large
proportion of the unrelated individuals are cases. Such
sampling schemes will tend to lead to a departure from
the explicit Hardy-Weinberg equilibrium (HWE) assump-
tion of all the methods. For disease models in which risk
increases with the number of risk alleles, such biased
sampling will tend to increase the amount of homozy-
gosity in the sample around the disease loci, which tends
to reduce the number of ambiguous genotypes. Other
disease models can be conjectured that would decrease
homozygosity, but analyses focused on this point have
suggested that departures from the HWE assumption are
not a great cause for concern (Stephens et al. 2001). In
addition, during the HapMap Project, it became clear
that there was some unexpected relatedness between in-
dividuals in some of the analysis panels (International

HapMap Consortium 2005), but our analysis shows that
the results of all algorithms are still good. One could
study extreme departures from the assumptions made
by the approaches studied here (Niu et al. 2002), but
we feel the most-informative measures of performance
for many applications will be the behavior of the meth-
ods on the large real data sets we studied.

We anticipate several forthcoming challenges for hap-
lotype-inference methods. One is to deal with inference
in pedigrees that are more complex than trios (Abecasis
and Wigginton 2005). Another, post-HapMap and other
genomic resources, is to incorporate information about
haplotypes known to be present in a population—and
their frequency—in the inference of haplotypes from new-
ly sequenced or genotyped individuals from the same or
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Figure 2 True (X-axis) and estimated (Y-axis) for the PHASE (left column), pairwise (center column), and GC methods (right column)2r
and with (rows 1 and 3) and without (rows 2 and 4) missing data. Rows 1 and 2 show the differences for a trio data set, whereas rows 3 and
4 show the differences for the unrelated individuals data set. The data set was chosen at random from the 50 data sets analyzed.

a closely related population. A number of the methods
described above lend themselves to this setting, and work
in this direction is under way.

A different type of question, which is also unresolved,
is whether and, if so, how best to use inferred haplotypes
in downstream analyses. All of the methods considered
produce a most likely set of haplotypes for their respec-
tive models, but some (the ones based on MCMC) can
naturally produce a sample of plausible haplotype recon-

structions that encapsulate the uncertainty in the esti-
mates (see table 1). The question is whether it is im-
portant to use these estimates of uncertainty in down-
stream analyses.

We saw above that, for estimation of , considerable2r
improvements in accuracy result from inferring haplo-
type phase (by use of PHASE) and then estimating 2r
from the inferred haplotypes. At least in some settings,
improved estimation of recombination rates and of his-
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torical recombination events can also result from first
estimating haplotypes and then treating these as known
(International HapMap Consortium 2005). We did not
look at estimating by integrating out over the uncer-2r
tainty in the haplotypes, and this might perform even
better than the two-stage procedure we did use.

In contrast, several studies have suggested that simply
“plugging in” haplotype estimates to analysis methods
can be suboptimal—namely, the studies of Morris et al.
(2004) in the context of fine mapping and Kraft et al.
(2005) for estimation of haplotype relative risks. Both
studies used maximum likelihood for phase estimation.
We saw above that this is one of the worst-performing
methods considered here, effectively because this method
does not give more weight to solutions in which hap-
lotypes cluster together. In addition, both studies con-
sidered situations—20 SNPs in 1 Mb for 100 cases/con-
trols in the work of Morris et al. (2004) and 4 SNPs for
200 cases/controls in that of Kraft et al. (2005)—in
which there remained considerable uncertainty over es-
timated haplotypes. The density of SNPs in future studies
will vary—depending on available resources, the geno-
typing platform used to assay the data, and the way in
which the assayed SNPs have been chosen—and will
likely lie somewhere between the density of the HapMap
samples and the sparse simulated data sets considered
by Morris et al. (2004) and Kraft et al. (2005). Knowl-
edge of the haplotypes from the HapMap project should
allow us to make much more accurate estimates of hap-
lotypes, whatever the density of the markers in the future
projects. Thus, uncertainty in haplotypes will be much
less than it would have been if the HapMap data were
not available. We suggest that the jury remains out on
this question, pending studies that use the best phase-
estimation methods on realistic-sized data sets and stud-
ies that take the HapMap data into account, for which
accurate phase estimation is more likely.

In the specific context of disease-association studies,
there remains an open question about how best to com-
bine information across markers. Doing so could but
need not necessarily use haplotype information. Chap-
man et al. (2003) have shown that, in a particular frame-
work, the cost, in terms of additional parameters, of
including haplotypes in the analysis, rather than simply
using multilocus genotypes, outweighs the benefits for
detecting a disease variant. In contrast, Lin et al. (2004a)
show that haplotype information has an important role
in detecting rare variants. Different issues arise in lo-
calization, and Zollner and Pritchard (2005) have shown
that haplotypes can be valuable in this context.
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(for the SNPHAP algorithm)
HAP, http://research.calit2.net/hap/
International HapMap Project, http://www.hapmap.org/
J.M.’s Web site, http://www.stats.ox.ac.uk/˜marchini/HapMap

.Phasing.pdf (for details of how haplotypes were inferred for the
PHASE v.1 HapMap)

PHASE, http://www.stat.washington.edu/stephens/software.html
PL-EM, http://www.people.fas.harvard.edu/˜junliu/plem/click.html
tripleM, http://www.sph.umich.edu/csg/qin/tripleM/
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