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Structural and insertion-deletion (indel) variants have
received considerable recent attention, partly because of their
phenotypic consequences. Among these variants, the most
common are small indels (B1–30 bp). Identifying and
genotyping indels using sequence traces obtained from diploid
samples requires extensive manual review, which makes
large-scale studies inconvenient. We report a new algorithm,
implemented in available software (PolyPhred version 6.0),
to help automate detection and genotyping of indels from
sequence traces. The algorithm identifies heterozygous
individuals, which permits the discovery of low-frequency
indels. It finds 80% of all indel polymorphisms with almost
no false positives and finds 97% with a false discovery rate of
10%. Additionally, genotyping accuracy exceeds 99%, and
it correctly infers indel length in 96% of the cases. Using this
approach, we identify indels in the HapMap ENCODE regions,
providing the first report of these polymorphisms in this
data set.

Recent studies have started to catalog the large number of structural
and indel variants present in human populations1–6. Of these, the
most common are small (B1- to 30-bp) indel polymorphisms7. Small
indels are important both because of their relative abundance (they are
the second most frequent type of polymorphism in humans after
nucleotide substitutions) and their functional significance: indels in
coding regions can cause severe disruptions in coding sequences8,9,
and indels in promoter regions can alter transcriptional activity10,11.
Indeed, small indels currently constitute B24% of all disease-causing
mutations reported at the Human Gene Mutation Database12 (as of
August 2006). As the allele frequency spectrum and linkage disequili-
brium (LD) characteristics of indels are similar to substitutions5,7,
indels can improve the resolution of genetic maps to uncover a more
detailed picture of sequence variation and LD in any region and can
have a valuable role in the mapping of complex diseases and traits.

Despite the abundance and potential functional importance of these
small indel polymorphisms, no efficient high-throughput technologies
currently exist to automatically identify and genotype them in
population samples. In principle, as for substitutions13–15, these
tasks can be accomplished by fluorescence-based resequencing. In

particular, individuals heterozygous for an indel allele can be reliably
identified from the complex pattern of multiple heterozygous peaks
(that is, the presence of a peak with a B50% drop in height compared
with a homozygote along with the presence of a second peak of similar
height corresponding to the alternate allele) that occur because of
mismatches in the two allelic sequences downstream of an indel7. This
detection of heterozygotes has a central role in comprehensively
detecting diallelic polymorphisms because for lower-frequency var-
iants, samples will often not include homozygotes for both alleles. In
addition, the pattern of peaks in heterozygotes can be used to identify
the inserted or deleted segment relative to a reference sequence. Thus,
with recent advances in high-throughput sequencing technology and
the rapid increase in resequencing-based polymorphism discovery16–18,
there exists an opportunity for large-scale identification of small
indel polymorphisms. However, although indels can be effectively
identified and genotyped manually using this pattern7, for large-
scale applications, it is impractical to manually examine every
trace. Although existing software tools novoSNP15, InSNP19 and
Mutation Surveyor (Softgenetics) help to automate this process,
these approaches still require extensive manual review of the identi-
fied polymorphisms.

In this report, we describe a new algorithm to help automate the
identification and genotyping of small (diallelic) indels from sequence
trace data. The method detects heterozygous indel patterns using a
statistical analysis of the base calls, quality and peak height data
obtained from raw sequence traces. In our tests, it is able to identify
80% of indels entirely automatically (without any false positives) and
97% of indels at a false discovery rate (that is, the proportion of false
positives among the positive discoveries) of 0.1. Its genotyping
accuracy exceeds 99%, and it can correctly infer the indel length in
96% of sites. The algorithm, implemented in a software package (Poly-
Phred version 6.0) is available from http://droog.mbt.washington.edu/
PolyPhred.html. We applied the method to analyze sequence trace
data from the ten ENCODE regions, generated as part of the HapMap
project, and our method identified 1,244 potential new indel poly-
morphisms, 1,126 of which (91%) we confirmed to be indels upon
manual inspection of the traces. The manual confirmation process
for 5 Mb of reference sequence took one person roughly 30 h,
demonstrating the potential for large-scale application.
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RESULTS
Our algorithm identifies indels through the characteristic pattern of
peaks that occurs in the traces of heterozygous individuals down-
stream of these polymorphisms (Fig. 1a). Distinguishing between this
pattern and the pattern of peaks in an ideal non-indel trace, which
consists of evenly spaced peaks of similar peak intensities (Supple-
mentary Fig. 1 online), is straightforward. The main challenge is
distinguishing between the pattern created by a heterozygous indel
and the noisy peak patterns occurring at the end of each trace due to
inconsistent gel migration of very long fragments (Supplementary
Fig. 1). To do this, our method uses the base calls as well as other
information (such as peak heights) obtained from the sequence traces
by Phred20. In outline, the method proceeds as
follows. First, for each possible indel position
and indel length, a likelihood ratio is com-
puted, reflecting the extent to which the
primary and secondary base calls reported by
Phred are more similar to calls expected in a
trace of an individual heterozygous for such
an indel than to calls expected in traces not
containing an indel. This process is illustrated
in Figure 1a–d. Within each trace, the loca-
tion and the length of the indel that has the
highest likelihood ratio is treated as a possible
indel and is subjected to further analysis. In
particular, we compute the heights of the
peaks both upstream and downstream of the
possible indel to see how they compare
with the pattern expected in heterozygotes
for actual indels (downstream of the indel,
we expect to see two peaks at most locations,
each of roughly the same height and about
half the height of the peaks upstream of
the indel). Having computed these trace
features, we use them, together with the

likelihood ratio, as independent variables in
a logistic regression to discriminate between
those traces from individuals heterozygous for
an indel and those who are not. (The para-
meters of this logistic regression have been
estimated using a training set of traces that
have been manually determined to contain, or
not contain, an indel). Ultimately, our algo-
rithm provides a score for each location,
summarizing the strength of the evidence for
an indel at that location. It marks each indel
whose score exceeds some user-specified
threshold as a potential indel and uses the
data on each individual’s traces to assign
genotypes to that individual, together with
an individual-specific score summarizing the
confidence that should be placed in each
genotype call. The method also provides an
estimate of the length of the indel. See Meth-
ods for more details.

Accuracy of indel detection
To assess accuracy of our algorithm for detect-
ing indels, we applied it to a ‘test set’ of
sequence traces obtained from 16 genes
involved in inflammation, lipid metabolism

and blood pressure regulation that were resequenced across 24
individuals of African descent and 23 individuals of European descent.
To ensure a fair evaluation, there was no overlap between this test set
and the training set of sequence data used to train the algorithm. We
compared potential indels marked by our method with a local
database of 172 ‘known’ indels that had been previously identified
by extensive manual inspection of the same traces, and we summarize
accuracy with two numbers: the true positive rate (TPR), which is the
proportion of indels that the method successfully detects (among all
known indels), and the false discovery rate (FDR), which is the
proportion of potential indels identified that are not actually indels
(among all potential indels identified). As most indels that can be

Reference sequence:
Primary base calls:
Secondary base calls:

Observed
base calls

5660 5665 5670 5675 5680 5685 5690 5695a

b

c

d

Figure 1 An example of how our algorithm identifies a heterozygous indel trace. (a) Heterozygous indel

trace along with its observed base calls aligned to the reference sequence. For the purpose of this
example, secondary base calls reported by Phred as ‘N’ (that is, cases in which no secondary base was

found) have been replaced by the corresponding primary base calls, suggesting that both the alleles of

the individual have the same base at the position. (b–d) Expected base calls computed from the

reference sequence under the assumption that there is (b) no indel, (c) a deletion of 1 bp at position

5664 or (d) a deletion of 2 bp at position 5664. In c and d, bases highlighted in green in the long

allele (top sequences) are deleted in the short allele (bottom sequences), which shifted the downstream

bottom sequence to the left. Base calls highlighted in red indicate those expected base calls that can

be matched with the observed base calls. The large number of matches in c (when compared with b

and d) reflect the fact that this trace comes from an individual with a 1-bp deletion at position 5664.
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Figure 2 Indel detection and genotyping accuracy. (a) Missed site rate versus false discovery rate for

different methods and data sets. Detection accuracy for the test genes from SeattleSNPs data (black

line) was computed by varying the threshold on the score for accepting site; results for thresholds of

70 (circle), 85 (triangle) and 90 (cross) are highlighted. Gray line represents results obtained after

exchanging the training data with the test data. Green line represents results from ENCODE data, and

blue line shows results from a smaller data set that was used to evaluate performance of other software

tools. Overall, the indel detection accuracy is similar to the SNP detection accuracy of PolyPhred v5

(orange line). Mutation Surveyor and InSNP do not provide any way to obtain results at different levels

of TPR. Hence, their results are plotted as two labeled points (brown squares). Results for novoSNP are

shown by the red line. (b) Genotype agreement rate versus the uncalled (that is, not reported) genotype

rate at different threshold values on the genotype score for reporting genotype.
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identified using resequencing are only 1 to a few bases in length7, we
considered only indels r30 bp in length, which constitute B99% of
all indels in this data, to assess the algorithm’s performance.

Our method assigns a score to each location, summarizing the
strength of the evidence for an indel at that location, and marks those
locations whose score exceeds a user-specified threshold as potential
indels. As the TPR and FDR vary with the threshold chosen, we
compute these quantities for various thresholds (Fig. 2a). The figure
provides an indication of the trade-off between sensitivity and
specificity or, more specifically, between missing indels and falsely
identifying locations that are not actually indels. At a TPR of 0.8, the
FDR was close to 0; at a TPR of 0.90, the FDR was 0.03; and for a TPR
of 0.97, the FDR was 0.1. The method showed similar accuracy when
we exchanged the training data (see Methods) with test data (Fig. 2a).
Performance on a smaller data set (see below), which included a subset
of the test data, was similar to performance on the entire test data
(Fig. 2a). We obtained a slightly higher level of accuracy when we
analyzed the much larger ENCODE data sets described below
(Fig. 2a), although interpretation of these latter numbers is compli-
cated by the fact that the indels were detected using the algorithm that
we wish to test, so the TPR will be overestimated. Overall, the
particular training data or the size and composition of the test data
do not seem to produce a substantial difference in the performance of
the method. The level of accuracy is similar to that achieved by current
methods for detecting SNPs from sequence trace data14.

We compared the performance of this approach to other available
software tools capable of identifying indels, including novoSNP15,
InSNP19 and Mutation Surveyor. As these tools can process only
limited data sets, we evaluated the performances (Fig. 2a) on a
smaller data set (see Methods). Detection rates for the various
approaches on these data were an FDR of 0.94 at a TPR of 0.8
(novoSNP), an FDR of 0.55 at a TPR of 0.41 (InSNP), an FDR of 0.94
at a TPR of 0.96 (Mutation Surveyor) and an FDR of 0.09 at a TPR of
0.95 (PolyPhred 6.0).

Indel length and genotyping accuracy
Determination of indel length from the pattern of peaks in a
heterozygote sample is tedious and requires considerable manual
analysis. In 95.6% of the identified sites, we found that indel length
determined by our method was the same as the one reported by the
human expert, suggesting that our approach can substantially reduce
the workload in variation analysis.

To assess the method’s accuracy in genotyping heterozygotes, we
computed the genotype agreement rate (GAR) as the proportion of
genotypes for which the call by the algorithm agreed with that by a
human expert. Overall, the GAR was 99.3%, but this can be increased
by not reporting genotypes that receive low scores. For example,
among genotypes with a score of at least 93, the GAR is 99.7%. This
increased GAR comes at the expense of 2% missing (that is, not
reported) genotypes (Fig. 2b).

Analysis of ENCODE regions
We applied our algorithm to sequence traces for the ten ENCODE
regions18 taken from the NCBI trace archive. We were able to align a
total of 544,465 traces successfully to the reference sequence and
analyzed them to identify 1,244 potential indels (score Z80) of length
r30 bp. Of these, 1,126 seemed to be real based on subsequent
manual inspection of the traces (Table 1). Distribution of lengths of
these indels was similar to that of the indels in the SeattleSNPs data
(Supplementary Fig. 2 online), with 1-bp, o5-bp and o12-bp indels
constituting 46%, 82% and 95% of the indels, respectively. Four of the

indels occurred in coding regions, 28 in the 5¢ and 3¢ UTR regions and
315 in the intronic regions; the remaining indels were located in
intergenic regions (Supplementary Table 1 online). Chromosomal
locations and lengths of the indels are provided in Supplementary
Table 2 online. Based on recent interest in the LD characteristics of
indels in relation to those of SNPs5,7,21,22 and whether indels can be
effectively assayed by proxy in SNP-based association studies, we
compared marker associations versus physical distance for marker
pairs in the ENCODE regions containing (i) an indel and a SNP
and (ii) two SNPs. As previously observed5,7 the strength of associa-
tions between indels and SNPs and SNP pairs are comparable
(Supplementary Fig. 2).

DISCUSSION
The development of high-density genetic maps across the human
genome provides unparalleled resources for analyzing the association
between common sequence polymorphism and common disease18.
Once applied, these resources are likely to identify the region(s)
associated with specific phenotype(s), and subsequent studies will
turn to completely cataloguing the variation in the region of interest
for specific populations or individuals23 to identify variants for further
molecular analysis. Resequencing has been the gold standard in
polymorphism discovery, and with its rapid increase in throughput
and reduction in costs, it is expected to remain at the forefront for
variant identification. One in every 15 diallelic sites is an indel
(Table 1). Aside from their value in increasing the resolution of
genetic maps, indel polymorphisms can also have an important role as
functional variants.

Although the proposed method is designed to identify new indel
polymorphisms and determine their genotypes for the sampled
individuals, it can be easily adapted to genotype known indels across
a larger set of samples. This approach will also be valuable in
diagnostic scanning, as indels are a major form of known disease-
causing mutations12.

We applied our method to the ENCODE regions of the HapMap.
Indels were not previously scored in these samples, so these data
represent a valuable resource to supplement the existing polymorph-
ism data in these regions and help to provide a more complete picture
of sequence variation in these sequences. They also enrich the database
with potentially functional sequence variation, as three of the indels
identified are predicted to lead to frameshifts in the underlying coding
sequences in the ENCODE regions. One of these three indels occurs in
a gene involved in hereditary multiple exostoses24. For the indels

Table 1 The number of indels and SNPs discovered in the ENCODE

project regions

Region Chromosome band Indels SNPsa Sequencing center

ENr112 2p16.3 142 2,275 Broad

ENr131 2q37.1 169 1,910 Broad

ENr113 4q26 152 2,201 Broad

ENm010 7p15.2 81 1,271 Baylor

ENm013 7q21.13 151 1,807 Broad

ENm014 7q31.33 134 1,966 Broad

ENr321 8q24.11 86 1,758 Baylor

ENr232 9q34.11 55 1,324 Baylor

ENr123 12q12 47 1,792 Baylor

ENr213 18q12.1 109 1,640 Baylor

Total 1,126 17,944

aSNP counts reported in Table 2 of ref. 18.
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identified in the SeattleSNPs data, four indels are predicted to cause
frameshift changes, one indel disrupts a splice site in the gene CD36
and another indel alters transcription factor binding, which has been
shown to increase the risk of coronary heart disease25. Because of the
importance of indel polymorphisms, many approaches are emerging
to identify and catalog large (Z70 bp) indels4–6,26. Our method
complements these methods by providing an approach to efficiently
identify smaller indels, which form the largest fraction of the indel
variation in the genome7,27,28. The software tool Polyphred v6
also includes an accurate algorithm to identify and genotype
nucleotide substitutions14 and thus can be used to provide a compre-
hensive catalog of sequence variation in a highly automated manner
in any region that can be amplified and sequenced from the
human genome.

Although resequencing can identify indels of lengths up to the
length of the PCR product, the proposed method can be computa-
tionally slow for detecting indels that are 430 bp in length. We
are investigating approaches more suited for indels involving more
than 30 bp.

METHODS
SeattleSNPs resequencing data and identification of indels. The resequencing

data for this work was produced by SeattleSNPs. Data for the following

18 genes were used as training data to fit the models (see below): APOLH,

CY4F2, EPHB6, F2RL1, IL1AP, IL1BT, IL1R1, IL1RN, IL21R, IL2RB, ILK24,

ILK4R, ILKN4, KLKN1, PLAUR, SELEL, SFPA2 and TRPV6. Data for the

following 16 genes were used as the test data to assess the performance

of the method: ABOBG, CD36A, ESELE, F2RL2, FAC11, FCT10,

MMPR3, MP3K8, PLAI1, SFPA1, SFTPD, TIRAP, TNFP3, TRAF6, TRPV5

and VCAM1.

The traces have been deposited in NCBI Trace Archive, and all variation data

have been deposited into the dbSNP database. All the DNA samples used for

variation discovery were obtained from Coriell Cell Repository. The candidate

genes were resequenced across two populations: 24 individuals selected from

the African American Human Variation Panel (HD50AA; individuals

NA17101–NA17116 and NA17133–NA17140) and 23 individuals from Centre

d’Etude du Polymorphisme Humain (CEPH) reference panel DNAs (Coriell

Cell Repository numbers NA06990, NA07019, NA07348, NA07349, NA10830,

NA10831, NA10842, NA10843, NA10842–NA10845, NA10848, NA10850–

NA10854, NA10857, NA10858, NA10860, NA10861, NA12547, NA12548 and

NA12560). The expected detection rates for these sample sizes are 99% for sites

with population mean allele frequency (MAF) of 45% and 87% for sites with

population MAF 41% (ref. 29). For each gene, we sequenced the genomic

region spanning the longest reference transcript in Entrez Gene, including

exons and introns, B2.5 kb upstream of the gene and B1.5 kb downstream of

the gene. Sequencing and data analysis were performed as described in ref. 16.

In brief, overlapping PCR primers were designed to cover the target region with

an average amplicon size of B980 bp and average overlap between amplicons

of B190 bp. The PCR products were sequenced using dye terminator

chemistry on ABI 3730 instruments. A total of 115,489 traces (average length,

B650 bp) were generated. The trace data were analyzed using the base-calling

software Phred20,30. Phred assigns primary and secondary base calls (if the

secondary peak is present) to each of the peaks in the traces as well as

computing quality values and heights of the primary and the secondary peaks.

The method we developed uses these data and the reference sequence to

identify indels. The sequence data were mapped onto the reference sequence

using Phrap and Cross_match (see URLs section below). The resultant

assemblies were visualized using the Consed program31 in order to correct

occasional errors in the alignments and to identify indels. Indels in the data

were initially identified and genotyped manually through the identification of

heterozygous indel patterns in traces7.

We used a smaller data set comprising four genes with 26 indels to compare

the performance of our method with other software tools, as the other tools can

process only limited amount of data. These genes spanned a total of 40 kb

reference sequence and were resequenced using 75 PCR amplicons. Two of

these genes (F2RL2 and SERPINE1) were from the SeattleSNPs data, and two

genes (ACTB and ALAD) were resequenced as a part of the Environmental

Genome Project across eight individuals (Coriell Cell Repository numbers

NA15385A, NA15063, NA15506, NA15341, NA15242, NA15352, NA15078

and NA15365A).

Indel detection algorithm. The algorithm consists of the following steps:

1. For each trace, use the given reference sequence to compute the

probability of the observed base calls, conditional on the observed quality

scores, under the assumption that there is no indel anywhere in the trace.

This probability is computed as follows: let X ¼ (X1, X2,y, Xn) denote the

observed base calls, where Xj is the ordered pair of primary and secondary

base calls at the j th position in the trace, and n is the length of the trace

in bp. LetQ ¼ (Q1, Q2,y, Qn) denote the corresponding observed

quality scores, and let Ynon-indel ¼ (Y1, Y2,y, Yn) denote the corresponding

‘expected’ base calls determined from the reference sequence (Fig. 1). We

assume that

PrðXjYnon�indel;QÞ ¼
Yn

j¼1
PrðXjjYnon�indel

j ;QjÞ;

where PrðXjjYnon�indel
j ;QjÞ is determined from tables we generated using

observed and expected base calls in a large number of traces determined by

manual inspection not to contain an indel (Supplementary Methods online).

2. For each trace, compute the probability of X, conditional on Q, under the

assumption that the trace contains a heterozygous indel of length k beginning

at site i, for –30 r k r 30, k a 0 and |k| o i o n – |k| (here, a negative value

of k represents an insertion relative to the reference sequence). This probability

is again based on using the reference sequence to determine the ‘expected’ base

calls, Yi,k ¼ (Y1
i,k, Y2

i,k, y, Yn
i,k), if there is an indel of length k at location i

(Fig. 1c,d), and then assuming that

PrðXjYi;k;QÞ ¼
Yn

j¼1
PrðXjjYi;k

j ;QjÞ:

This expression assumes that the vectors of the observed base calls (X) and the

expected base call (Yi,k) are properly aligned. In practice, however, errors in the

alignment of traces downstream of the indel can disrupt the alignment of the

observed and expected base calls. To overcome this, we align X with Yi,k using a

dynamic programming algorithm (Supplementary Methods and Supplemen-

tary Fig. 3 online) similar to the global pairwise sequence alignment algorithm

described in ref. 32. For j o i, the probabilities Pr( Xj | Yj
i,k, Qj ) are assumed to

be the same as for traces containing no indel, whereas for j Z i, the

probabilities are determined from tables created using observed and expected

base calls downstream of a heterozygous indel in traces manually determined to

contain a heterozygous indel (Supplementary Methods). Let î and k̂ denote the

values of i and k that maximize Pr (X|Y i,k, Q).

3. Compute the following five features:

(i) the log-likelihood ratio (LLR):

LLR ¼ logðPrðXjYî;k̂;QÞ=PrðXjYnon�indel;QÞÞ

(ii) the length L of the trace downstream of î : L ¼ n � î

(iii) a measure of the goodness of fit of the observed data to the indel

model (GOF), being the log-likelihood for the data downstream of the indel

divided by L:

GOF ¼ log
Y
j�î

PrðXjjYî;k̂
j ;QÞ

0
@

1
A,

L

(iv) a feature that summarizes the ratio of secondary to primary peak

heights at the potential heterozygous peaks in the trace downstream of the

indel (htratio):

htratio ¼ medianðh2j

�
h1j : î � j � n; b2j 6¼ ‘N’Þ;

where h1j and h2j denote the primary and the secondary peak heights,

respectively, reported by Phred; b2j is the secondary base call at the jth peak

in the trace and b2j a ‘N’ is the condition that a secondary base is reported at

the jth peak by Phred (for real indels, htratio tends to have a value close to 1);
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(v) a feature that summarizes the relative drop in the primary peak heights

downstream of the indel position compared with the upstream trace (drop):

drop ¼
X

b2 A;C;G;Tf g
dbwb;

where

db ¼
X

joî;b1j¼b

logðh1jÞ
,X

joî

1½b1j ¼ b��

X
j�î;b1j¼b;b2j 6¼‘N’

logðh1jÞ
,X

j�î

1½b1j ¼ b; b2j 6¼ ‘N’�

and

wb ¼
X
j�î

1½b1j ¼ b; b2j 6¼ ‘N’�
,X

j�î

1½b2j 6¼ ‘N’�;

where 1[.] represents the indicator function, and b1j denotes the primary base

call at the jth peak.

4. Eliminate traces with L r 5 from further analysis. For the remaining

traces, use the five features, along with suitable transformations and interaction

terms (Supplementary Table 3 online) as independent variables in a logistic

regression model to compute a score (LLRtrace) for each trace, quantifying the

strength of the evidence for an indel in that trace.

5. Combine information across multiple traces to identify likely locations of

indel polymorphisms. First, indel positions (î) from the traces with LLRtrace 4
–0.5 are mapped on to the reference sequence to create a list of likely locations

of indel polymorphisms in the gene. This results in clusters of points where

every cluster corresponds to either a true indel locus or a false positive locus.

We therefore apply a clustering algorithm to these points to identify putative

indel loci (see Supplementary Methods for details). For every putative locus,

we compute a log-likelihood ratio score (LLRlocus) using a logistic regression

model (Supplementary Table 4 online) that uses the following two features as

independent variables: (i) the highest value of the LLRtrace at the cluster and (ii)

the proportion of traces with LLRtrace 4 –0.5 among the traces that align at

that locus. A score with range 0–99, computed using LLRlocus as

100 expðLLRlocusÞ=ð1+ expðLLRlocusÞÞb c;

is then assigned to the locus.

6. At every potential indel locus, determine the genotypes (homozygous or

heterozygous) of each individual using a method similar to the expectation

maximization (EM) algorithm–based approach described in ref. 14 as follows:

(i) Initialize the current estimate f̂ of the minor allele frequency to 0.01.

(ii) For every individual, use f̂ to compute the probability that the genotype

is heterozygous, using

PrðhetÞ=PrðhomÞ ¼ f̂ =ð1 � f̂ Þ expðLLRtraceÞ
.

(iii) Compute the new value of f̂ as the average of the Pr(het) values for the

individuals. If f̂ o 0.01, set f̂ ¼ 0.01.

(iv) Return to (ii).

At the end of the second iteration, if Pr(het) 4 Pr(hom), the individual’s

genotype is classified as heterozygous; otherwise, it is classified as homozygous.

A score with a range of 50–99 is then assigned to the genotype call by

multiplying the corresponding probability by 100 and rounding the result to

integer value.

Analysis of ENCODE resequencing data. Traces for the ten ENCODE regions

were obtained from the NCBI Trace Archive. Owing to the large memory

requirements, in order to make this data amenable to analysis, each of the ten

regions was further divided into five subregions of 100 kb each. For the five

ENCODE regions resequenced at the Broad Institute, the traces were assigned

to the subregions based on the chromosomal locations of these traces available

at the trace archive. For the traces resequenced for the remaining five regions,

the chromosomal locations were not available in the archive. Therefore, traces

were assigned to the subregions based on how well they aligned to the reference

sequence of the subregion. We used the base-call sequence and the quality

values provided at the trace archive for each of the traces and Cross_match to

perform these alignments. Traces that were successfully assigned to the

subregions were analyzed using Phred to determine the base calls and quality

values. For each of the 50 subregions, an assembly of traces was constructed by

mapping the trace sequences on to the corresponding reference sequence using

Cross_match and Consed. The resulting assemblies were then analyzed using

the indel detection algorithm to identify indel loci. Trace data for the indels

detected by the method were then manually examined to confirm the indels at

the loci.

URLs. MutationSurveyor is available from Softgenetics at http://www.

softgenetics.com. Our algorithm, implemented in a software package (PolyPhred

version 6.0) is available from http://droog.mbt.washington.edu/PolyPhred.

html. For SeattleSNPs, see http://pga.gs.washington.edu/. For the NCBI

Trace Archive, see http://www.ncbi.nlm.nih.gov/Traces. For the Coriell Cell

Repository, see http://locus.umdnj.edu/ccr. For Phrap and Cross_match, see

http://www.phrap.org. For the Environmental Genome Project, see http://

egp.gs.washington.edu.

Note: Supplementary information is available on the Nature Genetics website.
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